Skip to main content

Gibberellin Biosynthetic Enzymes and the Regulation of Gibberellin Concentration

  • Conference paper
Gibberellins

Abstract

The numerous gibberellin (GA)-deficient dwarf mutants that have been characterized are spectacular demonstrations of the importance of GAs for shoot elongation. However, the growth rates of many tall genotypes are also increased by application of GAs, suggesting that the endogenous GA concentration may be limiting for growth in “normal” varieties. It has been shown for maize that the increased vigor of Fl hybrids, a phenomenon known as heterosis, is associated with higher GA concentrations in the hybrids.1 More dramatically, the rapid stem extension that precedes flowering in rosette plants, such as spinach, is accompanied by, and dependent on, increased GA biosynthesis.2,3 There is, therefore, considerable evidence that GA concentration is a determinant of plant height, and any consideration of how plant height is regulated must include an understanding of the control of GA concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rood SB, Buzzell RI, Mander LN, et al. Gibberellins: A phytohormonal basis for heterosis in maize. Science. 1988; 241: 1216–1218.

    Article  PubMed  CAS  Google Scholar 

  2. Zeevaart JAD. Effects of photoperiod on growth rate and endogenous gibberellins in the long-day rosette plant spinach. Plant Physiol. 1971; 47: 821–827.

    Article  PubMed  CAS  Google Scholar 

  3. Metzger JD, Zeevaart JAD. Photoperiodic control of gibberellin metabolism in spinach. Plant Physiol. 1982; 69: 287–291.

    Article  PubMed  CAS  Google Scholar 

  4. Phinney BO. Gibberellin A1, dwarfism and the control of shoot elongation in higher plants. In: Crozier A, Hillman, JR, eds. The biosynthesis and metabolism of plant hormones. Cambridge: Cambridge University Press, 1984: p. 1741.

    Google Scholar 

  5. MacMillan J. Metabolism of gibberellins A20 and A9 in plants: Pathways and enzymology. In: Pharis RP, Rood SB, eds. Plant growth substances 1988. Berlin: Springer-Verlag, 1990: In press.

    Google Scholar 

  6. Kobayashi M, Yamaguchi I, Murofushi N, et al. Fluctuation and localization of endogenous gibberellins in rice. Agric Biol Chem. 1988; 52: 1189–1194.

    Article  CAS  Google Scholar 

  7. Fujioka S, Yamane H, Spray CR, et al. The dominant non-gibberellinresponding dwarf mutant (D8) of maize accumulates native gibberellins. Proc Natl Acad Sci USA. 1988; 85: 9031–9035.

    Article  PubMed  CAS  Google Scholar 

  8. Rood SB, Larsen KM, Mander LN, et al. Identification of endogenous gibberellins from Sorghum. Plant Physiol. 1986; 82: 330–332.

    Article  PubMed  CAS  Google Scholar 

  9. Lenton JR, Hedden P, Gale MD. Gibberellin insensitivity and depletion in wheat—consequences for development. In:Hoad GV, Lenton JR, Jackson MB, Atkin RK, eds. Hormone action in plant development—A critical appraisal. London: Butterworths, 1987: p. 145–160.

    Google Scholar 

  10. Foster CA. Slender: An accelerated extension growth mutant of barley. Barley Genet Newslett. 1977; 7: 24–27.

    Google Scholar 

  11. Lanahan MB, Ho T-HD. Slender barley: a constitutive gibberellin-response mutant. Planta. 1988; 175: 107–114.

    Article  CAS  Google Scholar 

  12. Chandler PM. Hormonal regulation of gene expression in the “slender” mutant of barley (Hordeum vulgare L.). Planta. 1988; 175: 115–120.

    Article  CAS  Google Scholar 

  13. Hedden P, Croker SJ. GC–MS analysis of gibberellins in plant tissues. In: Kutácek M, Elliott MC, Machácková I, eds. Molecular aspects of hormonal regulation of plant development. The Hague: SPB Academic Publishing. 1990; p. 19–30.

    Google Scholar 

  14. Stoddart JL. Growth and gibberellin-A1 metabolism in normal and gibberellininsensitive (Rht3) wheat (Triticum aestivum L.) seedlings. Planta. 1984; 161: 432–438.

    Article  CAS  Google Scholar 

  15. Fujioka S, Yamane H, Spray CR, et al. Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L. Plant Physiol. 1988; 88: 1367–1372.

    Article  PubMed  CAS  Google Scholar 

  16. Spray C, Phinney BO, Gaskin P, et al. Internode length in Zea mays L. The dwarf-1 mutation controls the 3ß-hydroxylation of gibberellin A20 to gibberellin Al. Planta. 1984; 160: 464–468.

    Article  CAS  Google Scholar 

  17. Patterson RI, Rappaport L. The conversion of gibberellin Al to gibberellin A8 by a cell-free enzyme system. Planta. 1974; 119: 183–191.

    Article  CAS  Google Scholar 

  18. Smith VA, MacMillan J. Purification and partial characterization of a gibberellin 2ß-hydroxylase from Phaseolus vulgaris. J Plant Growth Regul. 1984; 2: 251–264.

    Article  CAS  Google Scholar 

  19. Nietfeld JJ, De Long L, Kemp A. The influence of 2-oxoglutarate on the activity of prolyl 4-hydroxylase. Biochim Biophys Acta. 1982; 704: 321–325.

    Article  PubMed  CAS  Google Scholar 

  20. Harwood JL. The site of action of some selective graminaceous herbicides is identified as acetyl CoA carboxylase. Trends Biochem Sci. 1988; 13: 330–331.

    Article  PubMed  CAS  Google Scholar 

  21. Majamaa K, Hanauske-Abel M, Günzler V, et al. The 2-oxoglutarate binding site of prolyl 4-hydroxylase. Identification of distinct subsites and evidence for 2-oxoglutarate decarboxylation in a ligand reaction at the enzyme-bound ferrous ion. Eur J Biochem. 1984; 138: 239–245.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this paper

Cite this paper

Hedden, P. (1991). Gibberellin Biosynthetic Enzymes and the Regulation of Gibberellin Concentration. In: Takahashi, N., Phinney, B.O., MacMillan, J. (eds) Gibberellins. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3002-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3002-1_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7754-5

  • Online ISBN: 978-1-4612-3002-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics