Skip to main content

Sound Generation by Reed and Lip Vibrations

  • Chapter
The Physics of Musical Instruments

Part of the book series: Springer Study Edition ((SSE))

  • 1036 Accesses

Abstract

Wind instruments are made to sound either by blowing a jet of air across some sort of opening, as in whistles, flutes, and flue organ pipes, or by buzzing together the lips or a thin reed and its support, as in trumpets, saxophones or oboes, or indeed as in the human voice. In this chapter, we shall discuss only this second class of sound generators—vibrating reeds—and defer discussion of air jet generators to Chapter 16.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Backus, J. (1961). Vibrations of the reed and air column in the clarinet. J. Acoust. Soc. Am. 33, 806–809.

    Article  ADS  Google Scholar 

  • Backus, J. (1963). Small-vibration theory of the clarinet. J. Acoust. Soc. Am. 35, 305–313

    Article  ADS  Google Scholar 

  • Backus, J. erratum (1977) 61, 1381–1383.

    Google Scholar 

  • Backus, J. (1978). Multiphonic tones in the woodwind instruments. J. Acoust. Soc. Am. 63, 591–599.

    Article  ADS  Google Scholar 

  • Backus, J. (1985). The effect of the player’s vocal tract on woodwind instrument tone. J. Acoust. Soc. Am. 78, 17–20.

    Article  ADS  Google Scholar 

  • Backus, J., and Hundley, T.C. (1971). Harmonic generation in the trumpet. J. Acoust. Soc. Am. 49, 509–519.

    Article  ADS  Google Scholar 

  • Bartolozzi, B. (1981). “New Sounds for Woodwinds.” 2nd ed. Oxford Univ. Press, London and New York.

    Google Scholar 

  • Benade, A.H. (1973). The physics of brasses. Sci. Am. 299(1), 24–35.

    Article  Google Scholar 

  • Benade, A.H. (1986). Interactions between the player’s windway and the air column of a musical instrument. Cleveland Clinic Quart. 53(1), 27–32.

    Google Scholar 

  • Benade, A.H., and Gans, D.J. (1968). Sound production in wind instruments. Ann. N.Y. Acad Sci. 155, 247–263.

    Article  ADS  Google Scholar 

  • Clinch, P.G., Troup, G.J., and Harris, L. (1982). The importance of vocal tract resonance in clarinet and saxophone performance—A preliminary account. Acustica 50, 280–284.

    Google Scholar 

  • Fletcher, N.H. (1976). Transients in the speech of organ flue pipes—A theoretical study. Acustica 34, 224–233.

    Google Scholar 

  • Fletcher, N.H. (1978). Mode locking in non-linearly excited inharmonic musical oscillators. J. Acoust. Soc. Am. 64, 1566–1569.

    Article  ADS  Google Scholar 

  • Fletcher, N.H. (1979a). Air flow and sound generation in musical wind instruments. Ann. Rev. Fluid Mech. 11, 123–146.

    Article  MathSciNet  ADS  Google Scholar 

  • Fletcher, N.H. (1979b). Excitation mechanisms in woodwind and brass instruments. Acustica 43, 63–72

    Google Scholar 

  • Fletcher, N.H. erratum (1982) 50, 155–159.

    Google Scholar 

  • Fletcher, N.H. (1983). Acoustics of the Australian didjeridu. Australian Aboriginal Studies 1, 28–37.

    Google Scholar 

  • Fletcher, N.H., Silk, R.K., and Douglas, L.M. (1982). Acoustic admittance of air-driven reed generators. Acustica 50, 155–159.

    Google Scholar 

  • Johnston, R., Clinch, P.G., and Troup, G.J. (1986). The role of vocal tract resonance in clarinet playing. Acoustics Australia 14, 67–69.

    Google Scholar 

  • Luce, D., and Clark, M. (1967). Physical correlates to brass-instrument tones. J. Acoust. Soc. Am. 42, 1232–1243.

    Article  ADS  Google Scholar 

  • Martin, D.W. (1942). Lip vibrations in a cornet mouthpiece. J. Acoust. Soc. Am. 13, 305–308.

    Article  ADS  Google Scholar 

  • St. Hilaire, A.O., Wilson, T.A., and Beavers, G.S. (1971). Aerodynamic excitation of the harmonium reed. J. Fluid Mech. 49, 803–816.

    Article  ADS  MATH  Google Scholar 

  • Schumacher, R.T. (1978). Self-sustained oscillations of the clarinet: An integral equation approach. Acustica 40, 298–309.

    MathSciNet  MATH  Google Scholar 

  • Schumacher, R.T. (1981). Ab initio calculations of the oscillations of a clarinet. Acustica 48, 71–85.

    Google Scholar 

  • Wilson, T.A., and Beavers, G.S. (1974). Operating modes of the clarinet. J. Acoust. Soc. Am. 56, 653–658.

    Article  ADS  Google Scholar 

  • Worman, W.E. (1971). Self-sustained nonlinear oscillations of medium amplitude in clarinet-like systems. PhD thesis, Case Western Reserve University, Cleveland, Ohio. University Microfilms, Ann Arbor, Michigan (ref. 71–22869 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Fletcher, N.H., Rossing, T.D. (1991). Sound Generation by Reed and Lip Vibrations. In: The Physics of Musical Instruments. Springer Study Edition. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2980-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2980-3_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94151-6

  • Online ISBN: 978-1-4612-2980-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics