Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 105))

Abstract

Two compact Riemannian manifolds are said to be isospectral if the associated Laplace-Beltrami operators have the same eigenvalue spectrum. The question, often posed as “Can you hear the shape of a drum,” asks whether isospectral manifolds are necessarily isometric. The answer is now well-known to be negative; the first counterexample was a pair of isospectral tori given by Milnor in 1964. Until 1980, however, the only other examples discovered were a few additional pairs of tori or twisted products with tori.

partially supported by National Science Foundation grant DMS-8601966

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Bérard, Spectral Geometry: Direct and Inverse Problems, Springer Lecture Notes, 1986.

    Google Scholar 

  2. P. Bérard, Variétés Riemanniennes isospectrales non isométriques, Astérisque 177–178, (1989), 127–154.

    Google Scholar 

  3. P. Bérard, Translplantation et isospectralité I, preprint.

    Google Scholar 

  4. P. Bérard, Transplantation et isospectralité II, preprint.

    Google Scholar 

  5. M. Berger, P. Gauduchon, and E. Mazet, Le Spectre d’une variété Riemannienne, Springer Lecture Notes 194 (1971).

    Google Scholar 

  6. R. Brooks, Constructing isospectral manifolds, Amer. Math. Monthly 95, (1988), 823–839.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Brooks, On manifolds of negative curvature with isospectral potentials, Topology 26, (1987), 63–66.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Brooks and C. S. Gordon, Isospectral families of conformally equivalent Riemannian metrics, Bull. Amer. Math. Soc. 23, no. 2 (1990), 433–436.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Brooks, P. Perry, and P. Yang, Isospectral sets of conformally equivalent metrics, Duke Math. J. 58 (1989), 131–150.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Brooks and R. Tse, Isospectral surfaces of small genus, Nagoya Math. J. 107 (1987), 13–24.

    MathSciNet  MATH  Google Scholar 

  11. P. Buser, Isospectral Riemann Surfaces, Ann. Inst. Four., Grenoble 36 (1986), 167–192.

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, 1984.

    Google Scholar 

  13. D. M. DeTurck, Audible and inaudible geometric properties, preprint.

    Google Scholar 

  14. D. M. DeTurck, C. S. Gordon, H. Gluck, and D. L. Webb, You cannot hear the mass of a homology class, Comm. Math. Helv. 64 (1989), 589–617.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. M. DeTurck, C. S. Gordon, H. Gluck, and D. L. Webb, How can a drum change shape while sounding the same?, to appear in DoCarmo Fetschrift.

    Google Scholar 

  16. D. M. DeTurck, C. S. Gordon, H. Gluck, and D. L. Webb, How can a drum change shape while sounding the same II? Mechanics, Analysis, and Geometry: 200 years after Lagrange (North Holland).

    Google Scholar 

  17. D. M. DeTurck, C. S. Gordon, H. Gluck, and D. L. Webb, Inaudible geometry of nilmanifolds, preprint.

    Google Scholar 

  18. D. M. DeTurck, C. S. Gordon, H. Gluck, and D. L. Webb, Geometry of isospectral deformations, preprint.

    Google Scholar 

  19. D. M. DeTurck, C. S. Gordon, H. Gluck, and D. L. Webb, Conformal isospectral deformations, preprint.

    Google Scholar 

  20. D. M. DeThrck and C. S. Gordon, Isospectral deformations II: trace formu- las, metrics and potentials, Comm. Pure Appl. Math. 42 (1989), 1067–1095.

    Article  MathSciNet  Google Scholar 

  21. P. Gilkey, On sperical space forms with meta-cyclic fundamental group which are isospectral but not equivariant cobordant, Comp. Math. 56 (1985), 171–200.

    MathSciNet  MATH  Google Scholar 

  22. C. S. Gordon, When you can’t hear the shape of a manifold, Math. Intelligencer II, no. 3 (1989), 39–47.

    Article  Google Scholar 

  23. C. S. Gordon, The Laplace spectra versus the length spectra of Riemannian manifolds, Contemporary Mathematics 51 (1986), 63–79.

    Google Scholar 

  24. C. S. Gordon, Riemannian manifolds isospectral on functions but not on 1-forms, J. Differential Geometry 24 (1986), 79–96.

    MATH  Google Scholar 

  25. C. S. Gordon and E. N. Wilson, Isospectral deformations of compact solvmanifolds, Journal of Differential Geometry 19 (1984), 241–256.

    MathSciNet  MATH  Google Scholar 

  26. C. S. Gordon and E. N. Wilson, The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Mich. Math. J. 33 (1986), 253–271.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Ikeda, On lens spaces which are isospectral but not isometric, Ann. Sci. Ecole. Norm. Sup. 13 (1980), 303–315.

    MathSciNet  MATH  Google Scholar 

  28. A. Ikeda, Riemannian manifolds p-isospectral but not (p +1)-isospectral, preprint.

    Google Scholar 

  29. A. Ikeda, On sperical space forms which are isospectral but not isometric, J. Math. Soc. Japan 35 (1983), 437–444.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Milnor, Eigenvalues of the Laplace Operator on certain manifolds, Proc. Nat. Acad. Sci USA 51 (1964), 542.

    Article  MathSciNet  MATH  Google Scholar 

  31. R. J. Spatzier, On isospectral locally symmetric spaces and a theorem of Von Neumann, Duke Math. J. 59(1989), 289–294; Correction: Duke Math. J. 60 (1990), 561.

    Google Scholar 

  32. T. Sunada, Riemannian coervings and isospectral manifolds, Ann. Math. 121 (1985), 169–186.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. F. Vignéras, Variétés Riemanniennes isospectrales et non isométriques, Ann. math. 112 (1980), 21–32.

    Article  MATH  Google Scholar 

  34. S. Zelditch, On the generic spectrum of a Riemannian cover, Ann. Inst. Fourier, Grenoble 40, 2 (1990), 407–442.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

Gordon, C.S. (1992). You Can’t Hear the Shape of a Manifold. In: Tirao, J., Wallach, N.R. (eds) New Developments in Lie Theory and Their Applications. Progress in Mathematics, vol 105. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2978-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2978-0_7

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7743-9

  • Online ISBN: 978-1-4612-2978-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics