A Lower Bound for the de Bruijn-Newman Constant Λ. II

  • T. S. Norfolk
  • A. Ruttan
  • R. S. Varga
Conference paper
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 19)

Abstract

A new constructive method is given here for determining lower bounds for the de Bruijn-Newman constant Λ, which is related to the Riemann Hypothesis. This method depends on directly tracking real and nonreal zeros of an entire function F λ(z), where λ < 0, instead of finding, as was previously done, nonreal zeros óf associated Jensen polynomials. We apply this new method to obtain the new lower bound for Λ,-0.385 < Λ, which improves previous published lower bounds of —50 and —5.

Keywords

Expense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.P. Boas, Entire Functions, Academic Press, Inc., New York, 1954.MATHGoogle Scholar
  2. [2]
    N.G. de Bruijn, The roots of trigonometric integrals, Duke Math. J. 17(1950), 197–226.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    G. Csordas, T.S. Norfolk, and R.S. Varga, The Riemann Hypothesis and the Turán inequalities, Trans. Amer. Math. Soc. 296(1986), 521–541.MathSciNetMATHGoogle Scholar
  4. [4]
    G. Csordas, T.S. Norfolk, and R.S. Varga, A lower bound for the de Bruijn-Newman constant Ʌ, Numer. Math. 52(1988), 483–497.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    P. Henrici, Applied and Computational Complex Analysis, vol. 1, Wiley & Sons, New York, 1974.MATHGoogle Scholar
  6. [6]
    P. Henrici, Applied and Computational Complex Analysis, vol. 2, Wiley & Sons, New York, 1977.MATHGoogle Scholar
  7. [7]
    R. Kress, On the general Hermite cardinal interpolation, Math. Comp. 26(1972), 925–933.MathSciNetMATHGoogle Scholar
  8. [8]
    J. van de Lune, H.J.J. te Riele, and D.T. Winter, On the zeros of the Riemann zeta-function in the critical strip. IV, Math. Comp. 46(1986), 667–681.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    E. Martensen, Zur numerischen Auswertung uneigentlicher Integrale, Z. Angew. Math. Mech. 48(1968), T83–T85, MR 41 #1221.MathSciNetGoogle Scholar
  10. [10]
    C.M. Newman, Fourier transforms with only real zeros, Proc. Amer. Math. Soc. 61(1976), 245–251.MathSciNetCrossRefGoogle Scholar
  11. [11]
    T.S. Norfolk, A. Ruttan, and R.S. Varga, A detailed numerical examination of the tracking of zeros of F λ(z) to produce lower bounds for the de Bruijn-Newman constant Λ, Technical Report of the Institute for Computational Mathematics, 1990, Kent State University, Kent, OH 44242.Google Scholar
  12. [12]
    G. Pólya, Über die algebraisch-funktionen Untersuchungen von J.L.W.V. Jensen, Kgl. Danske Vid Sel. Math.-Fys. Medd. 7(1927), 3–33.Google Scholar
  13. [13]
    H.J.J, Te Riele, Tables Of The First 15000 Zeros Of The Riemann Zeta Function To 28 Significant Digits, And Related Quantities, Report Number Nw67/69 Of The Mathematisch Centrum, Amsterdam, 1979.MATHGoogle Scholar
  14. [14]
    H.J.J, te Riele, A new lower bound for the de Bruijn-Newman constant, Numer. Math, (to appear).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • T. S. Norfolk
    • 1
  • A. Ruttan
    • 1
  • R. S. Varga
    • 1
  1. 1.Department of Math. & Computer ScienceKent State UniversityKentUSA

Personalised recommendations