Advertisement

A Lower Bound for the de Bruijn-Newman Constant Λ. II

  • T. S. Norfolk
  • A. Ruttan
  • R. S. Varga
Conference paper
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 19)

Abstract

A new constructive method is given here for determining lower bounds for the de Bruijn-Newman constant Λ, which is related to the Riemann Hypothesis. This method depends on directly tracking real and nonreal zeros of an entire function F λ(z), where λ < 0, instead of finding, as was previously done, nonreal zeros óf associated Jensen polynomials. We apply this new method to obtain the new lower bound for Λ,-0.385 < Λ, which improves previous published lower bounds of —50 and —5.

Keywords

Entire Function Simple Zero Real Zero Riemann Hypothesis Computational Complex Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.P. Boas, Entire Functions, Academic Press, Inc., New York, 1954.zbMATHGoogle Scholar
  2. [2]
    N.G. de Bruijn, The roots of trigonometric integrals, Duke Math. J. 17(1950), 197–226.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    G. Csordas, T.S. Norfolk, and R.S. Varga, The Riemann Hypothesis and the Turán inequalities, Trans. Amer. Math. Soc. 296(1986), 521–541.MathSciNetzbMATHGoogle Scholar
  4. [4]
    G. Csordas, T.S. Norfolk, and R.S. Varga, A lower bound for the de Bruijn-Newman constant Ʌ, Numer. Math. 52(1988), 483–497.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    P. Henrici, Applied and Computational Complex Analysis, vol. 1, Wiley & Sons, New York, 1974.zbMATHGoogle Scholar
  6. [6]
    P. Henrici, Applied and Computational Complex Analysis, vol. 2, Wiley & Sons, New York, 1977.zbMATHGoogle Scholar
  7. [7]
    R. Kress, On the general Hermite cardinal interpolation, Math. Comp. 26(1972), 925–933.MathSciNetzbMATHGoogle Scholar
  8. [8]
    J. van de Lune, H.J.J. te Riele, and D.T. Winter, On the zeros of the Riemann zeta-function in the critical strip. IV, Math. Comp. 46(1986), 667–681.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    E. Martensen, Zur numerischen Auswertung uneigentlicher Integrale, Z. Angew. Math. Mech. 48(1968), T83–T85, MR 41 #1221.MathSciNetGoogle Scholar
  10. [10]
    C.M. Newman, Fourier transforms with only real zeros, Proc. Amer. Math. Soc. 61(1976), 245–251.MathSciNetCrossRefGoogle Scholar
  11. [11]
    T.S. Norfolk, A. Ruttan, and R.S. Varga, A detailed numerical examination of the tracking of zeros of F λ(z) to produce lower bounds for the de Bruijn-Newman constant Λ, Technical Report of the Institute for Computational Mathematics, 1990, Kent State University, Kent, OH 44242.Google Scholar
  12. [12]
    G. Pólya, Über die algebraisch-funktionen Untersuchungen von J.L.W.V. Jensen, Kgl. Danske Vid Sel. Math.-Fys. Medd. 7(1927), 3–33.Google Scholar
  13. [13]
    H.J.J, Te Riele, Tables Of The First 15000 Zeros Of The Riemann Zeta Function To 28 Significant Digits, And Related Quantities, Report Number Nw67/69 Of The Mathematisch Centrum, Amsterdam, 1979.zbMATHGoogle Scholar
  14. [14]
    H.J.J, te Riele, A new lower bound for the de Bruijn-Newman constant, Numer. Math, (to appear).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • T. S. Norfolk
    • 1
  • A. Ruttan
    • 1
  • R. S. Varga
    • 1
  1. 1.Department of Math. & Computer ScienceKent State UniversityKentUSA

Personalised recommendations