Advertisement

Quasi-Orthogonal Hilbert Space Decompositions and Estimates of Univalent Functions. II

  • N. K. Nikolskii
  • V. I. Vasyunin
Conference paper
  • 259 Downloads
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 19)

Abstract

This paper is the second part of a report on an investigation of vectorial Cauchy-Bunyakowskii-Schwarz (CBS) inequality and its applications to estimates of Taylor coefficients of univalent functions. The first part is published in [13] and contains a description of the main general ideas of our approach: CBS inequality for operator measures, quasi-orthogonal (co-isometric) decompositions with respect to complementary metrics, multiplicative averaging of solutions of general evolution equations. The detailed exposition of the theory is contained in [17].

Keywords

Univalent Function Composition Operator Evolution Family Dirichlet Space Taylor Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Berenstein, C.A. and Hamilton, D.H. Et la conjecture de Bieberbach devint le théorème de Louis de Branges. - La Recherche, mensuel No. 166, mai (1985).Google Scholar
  2. [2]
    The Bieberbach conjecture. Proceedings of the Symposium on the Occasion of Proof. Providence: AMS, (1986).Google Scholar
  3. [3]
    de Branges, L. A proof of the Bieberbach conjecture. Preprint LOMI, E-5-84, Leningrad: LOMI, (1984).Google Scholar
  4. [4]
    de Branges, L. A proof of the Bieberbach conjecture. — Acta Math. (1985), 154: 137–152.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    de Branges, L. Powers of Riemann Mapping Functions. — The Bieberbach Conjecture. Proceedings of the Symposium on the Occasion of the Proof. Providence: AMS, (1986): 51–67.Google Scholar
  6. [6]
    de Branges, L. Underlying Concepts in the Proof of the Bieberbach Conjecture. — Proceedings of the International Congress of Mathematicians. Berkeley, California, USA, 1986, Berkeley, (1987): 25–42.Google Scholar
  7. [7]
    de Branges, L. Square summable power series. Heidelberg, Springer (to appear).Google Scholar
  8. [8]
    de Branges, L. Das mathematische Erbe von Ludwig Bieberbach (1886–1982). — Address to Mathematisches Institut der Universität Basel, May 4, 1990 (in the occasion of receiving of Alexander Ostrowski Prize).Google Scholar
  9. [9]
    FitzGerald, C.H. The Bieberbach Conjecture: Retrospective. — Notices Amer. Math. Soc. (1985) 32: 2–6.MathSciNetzbMATHGoogle Scholar
  10. [10]
    Fomenko, O.M. and Kuz’mina, G.V. The Last 100 Days of the Bieberbach Conjecture. — Mathematical Intelligencer. (1986) 8, No. 1: 40–47.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Kolata, G. Surprise Proof of an Old Conjecture. — Science. (1984) 225: 1006–1007.CrossRefGoogle Scholar
  12. [12]
    Korevaar, J. Ludwig Bieberbach’s conjecture and its proof by Louis de Branges. — Amer. Math. Monthly. August–September, (1986) 93, No. 7: 505–514.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Nikolskii, N.K. and Vasyunin, V.I. Quasi-orthogonal Hilbert space decompositions and estimates of univalent functions. I. Proc. of Symposium on Functional Analysis and Applications, Sapporo, 1990, (Math. Reports of Sapporo University; to appear).Google Scholar
  14. [14]
    Nikolskii, N.K. and Vasyunin, V.I. Notes on two function models. — The Bieberbach Conjecture. Proceedings of the Symposium on the Occasion of the Proof. Providence: Amer. Math. Soc, (1986): 113–141.Google Scholar
  15. [15]
    Pommerenke, Ch. Univalent functions. Göttingen: Vandenhoeck and Ruprecht, (1975), p. 376.zbMATHGoogle Scholar
  16. [16]
    Rovnyak, J. Coefficient estimates for Riemann mapping functions. — J. d’Analyse Math. (1989) 52: 53–93.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Vasyunin, V. and Nikolskii, N. Quasi-orthogonal decompositions with respect to complementary metrics and estimations of univalent functions. Algebra and Analysis, (1990) 2, No. 4: 1–81 (Russian).MathSciNetzbMATHGoogle Scholar
  18. [18]
    Vasyunin, V. and Nikolskii, N. Operator measures and coefficients of univalent functions. Algebra and Analysis, 1991, (to appear, Russian).Google Scholar
  19. [19]
    Zemánek J. Hipoteza Bieberbacha, 1916–1984. — Roczniki Polskiego Towarzystwa Matem., Seria II: Wiadomosci Matem. XXVII, 1986: 1–14.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • N. K. Nikolskii
    • 1
  • V. I. Vasyunin
    • 1
  1. 1.Steklov Mathematical InstituteSt. Petersburg BranchSt. PetersburgRussia

Personalised recommendations