Approximation by Entire Functions and Analytic Continuation

  • N. U. Arakelyan
Conference paper
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 19)


This article deals with the application of results from the theory of approximation by entire functions to, classical problems about the analytic continuation of analytic functions given by their Taylor series. Generalizations and completions of well known results due to E. Lindelöf, F. Carlson, and others are obtained.


Power Series Holomorphic Function Entire Function Analytic Continuation Imaginary Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Agmon, S., On the singularities of Taylor series with reciprocal coefficients. Pac. J. Math. 2(1952), 431–453.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Arakelyan, N.U., Approximation complexe et propriétés des fonctions analytiques, In: Proc. Internat. Congr. Math. (Nice, 1970), Vol. 2, Gauthier-Villars, Paris, 1971, 595–600.Google Scholar
  3. [3]
    Arakelyan, N.U., On efficient analytic continuation of power series, Math. USSR Sb., 52(1985), No. 1, 21–39.zbMATHCrossRefGoogle Scholar
  4. [4]
    Arakelyan, N.U., Gauthier, P.M., On tangential approximation by holomorphic function, Izv. Acad. Nauk Arm. SSR, Mat. 17, No. 6, (1982), 421–441.MathSciNetGoogle Scholar
  5. [5]
    Arakelyan, N.U., Martirosyan, V.A., The localization of the singularities of power series on the boundary of the circle of convergence. Izv. Acad. Nauk Arm. SSR, Mat. 22, No. 1, (1987), 3–21.MathSciNetzbMATHGoogle Scholar
  6. [6]
    Arakelyan, N.U., Martirosyan, V.A., The localization of the singularities of power series on the boundary of the circle of convergence. II. Izv. Acad. Nauk Arm. SSR, Mat. 23, No. 2, (1988), 123–137.MathSciNetGoogle Scholar
  7. [7]
    Bieberbach, L., Analytische Fortsetzung, Springer-Verlag, Heidelberg, 1955.zbMATHGoogle Scholar
  8. [8]
    Carleman, T., Sur un théorème de Weierstrass, Ark. Mat. Astr. Fis. 20 B, (1927), No. 4, 1–5.Google Scholar
  9. [9]
    Carlson, F., Sur une Classe de Series de Taylor, Diss., Upsala, 1914.zbMATHGoogle Scholar
  10. [10]
    Carlson, F., Über ganzwertige ganze Functionen, Math. Z. 11(1921), 1–23.MathSciNetCrossRefGoogle Scholar
  11. [11]
    Cowling, V.F., A generalization of a theorem of LeRoy and Lindelöf, Bull. Amer. Math. Soc. 52(1946), 1065–1082.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Dienes, P., The Taylor Series, Clarendon Press, Oxford, 1931.Google Scholar
  13. [13]
    Dufresnoy, J., Pisot, Ch., Prolongement analytique de la serie de Taylor, Ann. Sci. Ecole Norm. Super., Ser. 3, (1951), 68, 105–124.MathSciNetzbMATHGoogle Scholar
  14. [14]
    Gawronski, W., Trauthner, R., Analytische Forsetzung von Potenzreihen, Serdica, Bulgar. Math. Publ., 2, No. 4, (1976), 369–374.Google Scholar
  15. [15]
    Hadamard, J., Essai sur l’étude des fonctions données par leur développement de Taylor, J. Math. Pures Appl. (4), 8(1982), 101–186.Google Scholar
  16. [16]
    Hadamard, J., La Série de Taylor et son Prolongement Analytique, Coll. Scientia, Carré et Naud, Paris, 1901, No. 12, 102s.zbMATHGoogle Scholar
  17. [17]
    Keldish, M.V., Sur l’approximation des fonctions holomorphes fonctions entires, C.R. (Dokl.) Acad. Sci. USSR 47(1945), 239–241.Google Scholar
  18. [18]
    Leau, L., Recherches sur les singularities d’une fonction definie par un developpement de Taylor, J. Math. Pures Appl. (5), 5(1899), 365–425.Google Scholar
  19. [19]
    LeRoy, E., Sur les séries divergentes et les fonctions definies par un developpement de Taylor, Ann de la faculte des sci. de Toulouse (2), 2(1900), 317–430.MathSciNetCrossRefGoogle Scholar
  20. [20]
    Levin, B. Ya., Distribution of Zeros of Entire Functions, GITTL, Moscow, 1956; English transl. in Amer. Math. Soc, Providence, R.I., 1964.zbMATHGoogle Scholar
  21. [21]
    Lindelöf, E., Le Calcul des Residus et ses Applications a la Theorie des Fonctions, Paris, Gauthier-Villars, 1905.Google Scholar
  22. [22]
    Mergelyan, S.N., Uniform approximations of functions of a complex variable, Uspekhi Mat. Nauk 7(1952), No. 2 (48), 31–122; English transl. in Amer. Math. Soc. Transl. (1) 3(1962), 294–391.MathSciNetGoogle Scholar
  23. [23]
    Pólya, G., Untersuchungen über Lünken und Singularitäten von Potenzrethen, Math. Z., (1929), 29, 549–640.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    Pólya, G., Szegö, G., Aufgaben und Lehrsät aus der Analysis, B. 1, 2. Berlin, Springer-Verlag, 1925.Google Scholar
  25. [25]
    Wigert, S., Sur les fonctions entieres, Oefversigt af svenska Vetenskaps. Forhandl., 57(1900), 1007–1011.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • N. U. Arakelyan
    • 1
  1. 1.Institute of MathematicsArmenian Academy of SciencesYerevanArmenia

Personalised recommendations