Biomarkers of Pesticide Exposure

  • M. A. Brewster
  • B. S. Hulka
  • T. L. Lavy
Conference paper
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 128)


Epidemiologic studies of potential health effects resulting from exposure to one or multiple pesticides are strengthened by the use of biological markers, such as internal dose markers, to more accurately classify individual exposures. Additionally, measures of internal body dose are also useful to establish guidelines for field reentry and protective clothing or practices, and to enable early detection of exposure circumstances in worker safety programs. This chapter explores the concepts of exposure biomarkers, focusing on their past and potential application to studies of pesticide exposures.


Sister Chromatid Exchange Pesticide Exposure Biologically Effective Dose Internal Dose Protein Adduct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackrill P, Hasletone PS, Ralston AJ (1978) Oesophageal perforation due to paraquat. Br Med J 1: 1252 – 153.PubMedCrossRefGoogle Scholar
  2. Aitio A (1984) Kinetic considerations in monitoring exposure to chemicals. In: Berlin A, Draper M, Hemminki K, Vainio H (eds) Monitoring exposure to carcinogenic and mutagenic agents. IARC Scientific Publ No 59, Lyon, pp 127 – 133.Google Scholar
  3. Ames BN (1983) Dietary carcinogens and anticarcinogens: Oxygen radicals and degenerative diseases. Science 221: 1256 – 1264.PubMedCrossRefGoogle Scholar
  4. Ando M, Hirosaky S, Tamura K, Taya T (1984) Multiple regressive analysis of the cholinesterase activity with certain physicochemical factors. Environ Res 33:96– 105.Google Scholar
  5. Angerer J (1985) Biological monitoring of workers exposed to organic solvents: Past and present. Scand J Work Environ Hlth 11 (Suppl 1): 45 – 52.Google Scholar
  6. AOAC (Association of Official Analytical Chemists) (1980) Official methods of analysis of the Association of Official Analytical Chemists, Horowitz W (ed), 26.027, 29.002, 34.011, 13th ed, Washington, DC.Google Scholar
  7. Bakir F, Damluji S, Amin-Zaki L, Murtadha M, Khalidi A, Al-Rawi N, Tikriti S, Dhahir H, Clarkson T, Smith J, Doherty R (1973) Methylmercury poisoning in Iraq. Science 184: 230.CrossRefGoogle Scholar
  8. Boy land E (1971) Mercapturic acid conjugation. In: Brodie BB and Gilette JR (eds) Handbook of experimental pharmacology, Vol. 28. Springer-Verlag, Berlin, p 584.Google Scholar
  9. Brewster MA (1988) Biomarkers of xenobiotic exposures. Ann Clin Lab Sci 18:300– 317.Google Scholar
  10. Calabrese J (1991) Multiple chemical interactions. Lewis Publ, Chelsea, MI.Google Scholar
  11. Carbonell E, Puig M, Xamena N, Creus A, Marcos R (1990) Sister chromatid exchange in lymphocytes of agricultural workers exposed to pesticides. Mutagenesis 5: 403 – 405.PubMedCrossRefGoogle Scholar
  12. Chester J, Woolen BH (1981) Studies on the occupational exposure of Malaysian plantation workers to paraquat. Br J Ind Med 38: 23 – 33.Google Scholar
  13. Coye MJ, Lowe JA, Maddy KJ (1986) Biological monitoring of agricultural workers exposed to pesticides: Monitoring of intact pesticides and their metabolites. J Occup Med 28: 628 – 636.PubMedCrossRefGoogle Scholar
  14. Davidson JK, MacPherson P (1972) Pulmonary changes in paraquat poisoning. Clin Radiol 23: 18 – 25.PubMedCrossRefGoogle Scholar
  15. Davies JE, Enos E, Barguet A, Morgade C, Danauskas JR (1979) Pesticides monitoring studies. The epidemiological and toxicological potential of urinary metabolites. In: Toxicology and occupational medicine. Proc 10th Int Ann Conf Toxicol Occup Med 1978, 369 – 378, U Miami School of Medicine Dept of Epidemiology & Public Health, Miami, FL.Google Scholar
  16. DeFerrari M, Artuso M, Bonassi S, Bonatti S, Cavalieri Z, Pescatore D, MarchiniE, Pisano V, Abbondandolo A (1991) Cytogenetic biomonitoring of an Italian population exposed to pesticides: Chromosome aberration and sister-chromaticd exchange analysis in peripheral blood lymphocytes. Mutat Res 260: 105 – 113.Google Scholar
  17. Deshmukh SN, Nigg HN, Stamper JH, Bryan CR, Toth JP, Nielsen AP, Royer M (1987) Rapid estimation of 4,4′-dichlorobenzilic acid in human urine after dicofol exposure. Bull Environ Contam Toxicol 39: 498 – 505.PubMedCrossRefGoogle Scholar
  18. Draper WM, Street JC (1982) Applicator exposure to 2,4-D, dicamba and dicamba isomer. J Environ Sci Hlth 17: 321 – 339.CrossRefGoogle Scholar
  19. Droz PO, Guillemin MP (1986) Occupational exposure monitoring using breath analysis. J Occup Med 28: 593 – 602.PubMedCrossRefGoogle Scholar
  20. Dudek BR, Barth M, Gephart J, Huggins J, Richardson RJ (1979) Correlation of brain and lymphocyte neurotoxic esterase inhibition in adult hen following dosing with neurotoxic compounds. Toxicol Appl Pharmacol 48: A198.Google Scholar
  21. Duncan RC, Griffith J (1985) Monitoring study of urinary metabolites and selected symptomatology among Florida citrus workers. J Toxicol Environ Hlth 16:509– 521.Google Scholar
  22. Durham WR, Wolfe HR, Elliott JW (1972) Absorption and excretion of parathion by spraymen. Arch Environ Hlth 24: 381 – 387.Google Scholar
  23. Durston WE, Ames BN (1974) A simple method for the detection of mutagens in urine: Studies with the carcinogen 2-acetylaminofluorene. Proc Natl Acad Sci 71: 737 – 741.PubMedCrossRefGoogle Scholar
  24. Elinder CG, Vesterberg O (1985) Environmental and biological monitoring. Scand J Work Environ Hlth 11 (Suppl): 91 – 102.Google Scholar
  25. Falck K, Partanen P, Sorsa M, Souvaniemi O, Vainio H (1985) Mutascreen, an automated bacterial mutagenicity assay. Mutat Res 150: 119 – 125.PubMedGoogle Scholar
  26. Feldman RJ, Maibach HJ (1974) J Toxicol Appl Pharmacol 28: 126 – 132.CrossRefGoogle Scholar
  27. Forbess RC, Morris JR, Lavy TL, Talbert RE, Flynn RR (1982) Exposure measurements of applicators who mix and spray Paraquat in grape vineyards. HortScience 17: 955 – 956.Google Scholar
  28. Franklin CA, Fenske RA, Greenhalgh R, Mathieu L, Denley HC, Leffingwell JT, Spear RC (1981) Correlation of urinary pesticide metabolite excretion with estimated dermal contact in the course of occupational exposure to guthion. J Toxicol Environ Hlth 7: 715 – 731.CrossRefGoogle Scholar
  29. Galloway DB, Petri JC (1972) Recovery from severe paraquat poisoning. Postgrad Med J 48: 684 – 686.PubMedCrossRefGoogle Scholar
  30. Garrett NE, Stack HF, Waters MD (1986) Evaluation of the genetic activity profiles of 65 pesticides. Mutat Res 168: 301 – 325.PubMedGoogle Scholar
  31. Goldberg A, Rimington C (1962) Diseases of porphyrin metabolism. Charles C. Thomas Co, Springfield, IL.Google Scholar
  32. Goldring JM, Lucier GW (1990) Protein and DNA adducts. In: Hulka BS, Wilcosky TC, Griffith JD (eds) Biological markers in epidemiology. Oxford Univ Press, New York, pp 78 – 104.Google Scholar
  33. Goldstein JA, Hickman P, Bergman H, Vos JG (1973) Hepatic porphyria induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in the mouse. Res Commun Chem Pathol Pharmacol 6: 919 – 929.PubMedGoogle Scholar
  34. Goldstein JA, Hickman P, Jue DL (1974) Experimental hepatic porphyria induced by polychlorinated biphenyls. Toxicol Appl Pharmacol 27: 437 – 448.PubMedCrossRefGoogle Scholar
  35. Green MHL, Muriel WJ, Bridges BA (1976) Use of a simplified fluctuation test to detect low levels of mutagens. Mutat Res 38: 33 – 42.PubMedGoogle Scholar
  36. Hayes AL, Wise RA, Weir TW (1980) Assessment of occupational exposure to organophosphates in pest control operators. Am Ind Hyg Assoc J 41: 568 – 575.PubMedCrossRefGoogle Scholar
  37. Hemminki K, Sorsa M, Vainio H (1979) Genetic risks caused by occupational chemicals: Use of experimental methods and occupational risk group monitoring in the detection of environmental chemicals causing mutations, cancer and malformations. Scand J Work Environ Hlth 5: 307 – 327.CrossRefGoogle Scholar
  38. Henderson PT, van Doorn R, Leijdekkers CM, Bos RP (1984) Excretion of thioethers in urine after exposure to electrophilic chemicals. IARC Sci Publ 59:173– 187.Google Scholar
  39. Higenbottam T, Crome P, Parkinson C, Nunn J (1979) Further clinical observations on the pulmonary effect of paraquat ingestion. Thorax 34: 161 – 165.PubMedCrossRefGoogle Scholar
  40. Hogue CJR, Brewster MA (1991) The potential of exposure biomarkers in epidemiologic studies of reproductive health. Environ Hlth Perspect 90: 261 – 269.CrossRefGoogle Scholar
  41. Hulka BS (1990) Overview of biological markers. In: Hulka BS, Wilcosky TC, Griffith JD (eds) Biological markers in epidemiology. Oxford Univ Press, New York, pp 3 – 14.Google Scholar
  42. Hunter J, Maxwell JD, Stewart DA, Williams R (1972) Increased hepatic enzyme activity from occupational exposure to certain organochlorine pesticides. Nature 237: 399 – 401.PubMedCrossRefGoogle Scholar
  43. Kaloyanova FP, El Batawi MA (1991) Human toxicology of pesticides. CRC Press, Boca Raton, FL.Google Scholar
  44. Klopman G, Contreras R, Rosenkranz HS, Waters MD (1985) Structure-genotoxic activity relationships of pesticides: Comparison of the results from several short- term assays. Mutat Res 147: 343 – 356.PubMedGoogle Scholar
  45. Kolmodin-Hedman B, Swenson A, Akerblom M (1982) Occupational exposure to some synthetic pyrethroids (permethrin and fenvalerate). Arch Toxicol 50:27– 33.Google Scholar
  46. Kolmodin-Hedman B, Hoglund S, Akerblom M (1983) Studies on phenoxy acid herbicides. I. Field Study. Arch Toxicol 54: 257 – 265.PubMedCrossRefGoogle Scholar
  47. Kolmodin-Hedman B (1984) Pesticides. In: Aitio A, Riihimaki V, Vainio H (eds) Biological monitoring and surveillance of workers exposed to chemicals. Hemisphere Publ Corp, Washington, DC, pp 209 – 218.Google Scholar
  48. Kurttio P, Vartiainen T, Salvolainen K (1990) Environmental and biological monitoring of exposure to ethylenebis-dithiocarbamate fungicides and ethylenethiourea. Br J Ind Med 47: 203 – 206.PubMedGoogle Scholar
  49. Kutz F, Strassman S, Sperling JF (1979) Survey of selected organochlorine pesticides in the general population in the United States. Ann NY Acad Sci: 320:60– 68.Google Scholar
  50. Kuzo LO, Casida JE (1977) Metabolism and toxicity of pyrethroids with dihalovi- nylsubstituents. Environ Hlth Perspect 21: 285.CrossRefGoogle Scholar
  51. Latt SA, Allen J, Bloom SE, Carrano A, Falke E, Kram DK, Schneider E, Schreck R, Tice R, Whitfield B, Wolff S (1981) Sister-chromatid exchanges: A report of the gene-tox program. Mutat Res 87: 17 – 62.PubMedGoogle Scholar
  52. Lavy TL, Cowell JE, Steinmetz JR, Massey JH (1992a) Conifer seedling nursery worker exposure to glyphosate. Arch Environ Contam Toxicol 22: 6 – 13.CrossRefGoogle Scholar
  53. Lavy TL, Shephard JS, Bouchard DC (1980a) Field worker exposure and helicopter spray pattern of 2,4,5-T. Bull Environ Contam Toxicol 24: 90 – 96.CrossRefGoogle Scholar
  54. Lavy TL, Shepard JS, Mattice JD (1980b) Exposure measurements of applicators spraying (2,4,5-trichlorophenoxy)acetic acid in the forest. J Agric Food Chem 28: 626–630.CrossRefGoogle Scholar
  55. Lavy TL, Walstad JD, Flynn RR, Mattice JD (1982) (2,4-dichlorophenoxy)acetic acid exposure received by aerial application crews during forest spray operations. J Agric Food Chem 30: 375–382.Google Scholar
  56. Lavy TL, Mattice JD (1984) Monitoring human exposure during pesticide application in the forest. ACS Symp Series No 238, Washington, DC, pp 319 – 330.Google Scholar
  57. Lavy TL, Mattice JD (1986) Progress in pesticide exposure studies and future concerns. Toxicol Lett 33: 61 – 71.PubMedCrossRefGoogle Scholar
  58. Lavy TL, Norris LA, Mattice JD, Marx DB (1987) Exposure of forestry ground workers to 2,4-D, picloram and dichlorprop. Environ Toxicol Chem 6: 209 – 224.CrossRefGoogle Scholar
  59. Lavy TL, Mattice JD (1989) Biological monitoring techniques for humans exposed to pesticides. In: Wang RGM, Franklin CA, Honeycutt RC, Reinert JC (eds) Biological monitoring for pesticide exposure: Measurement, estimation and risk reduction. ACS Symp Series No 382, Washington, DC, pp 193 – 205.Google Scholar
  60. Lavy TL, Mattice JD, Flynn RR (1983) Field studies monitoring worker exposure to pesticides. Spec Tech Testing Publ 795, Am Soc for Testing and Materials, Philadelphia, PA. pp 60 – 74.Google Scholar
  61. Lavy TL, Mattice JD, Massey JH, Skulman BW (1991) Assessing the exposure of tree nursery workers to pesticides. Proc South Weed Sci Soc, p 416, South Weed Sci Soc, Champagne, IL.Google Scholar
  62. Lavy TL, Mattice JD, Massey JH, Skulman BW (1992b) Monitoring simultaneous exposure to multiple pesticides in the field. Poster presented at ACS Symp on Minimizing Human Exposure to Pesticides, San Francisco, CA, April 5 – 7.Google Scholar
  63. Libich S, To JC, Frank R, Sirons GJ (1984) Occupational exposure to herbicides used along electric power transmission line right of way. Am Ind Hyg Assoc J 45: 56 – 62.PubMedCrossRefGoogle Scholar
  64. Lohman PHM, Jansen JD, Baan RA (1985) Comparison of various methodologies with respect to sensitivity and specificity in biomonitoring occupational exposure to mutagens and carcinogens. In: Berlin K, Vaino H, Draper M (eds) Monitoring human exposure to carcinogenic and mutagenic agents. IARC, Lyon, pp 259– 277.Google Scholar
  65. Lotti M, Becker CE, Aminoff MJ, Woodrow JE, Seiber JN, Talcott RE, Richardson RJ (1986) Occupational exposure to the cotton defoliants DEF and merphos. J Occup Med 25: 517 – 522.Google Scholar
  66. Maddy KT, Knaak JB, Gibbons DB (1986) Monitoring the urine of pesticide applicators in California for residues of chlordimeform and its metabolites 1982– 85. Toxicol Lett 33: 37 – 44.PubMedCrossRefGoogle Scholar
  67. Manninen A, Kangas J, Klon T, Salvoleinen H (1986) Exposure of Finnish farmworkers to phenoxyacid herbicides. Arch Environ Contam Toxicol 15: 107 – 111.PubMedCrossRefGoogle Scholar
  68. Maroni M (1986) Organophosphorous pesticides. In: Alessio L, Berlin A, Boni M, Roi R (eds) Biological indicators for the assessment of human exposure to industrial chemicals. CRC Press, Boca Raton, FL.Google Scholar
  69. Mattison D (1991) In: Frontiers in assessing human exposures to environmental toxicants. Rep of May 1990, Symp Nat Resh Council, Nat Acad Press, Washington, DC, pp 14 – 16.Google Scholar
  70. Mehendale HM (1989) Impact of chemical interactions on the development of cancer. ACS Symp Ser (414): 122 – 141.Google Scholar
  71. Murphy RS, Kutz FW, Strassman SC (1983) Selected pesticide residues or metabolites in blood and urine specimens from a general population survey. Environ Hlth Perspect 48: 81 – 86.CrossRefGoogle Scholar
  72. Mustonen R, Kangas J, Vuojolahti P, Linnainmaa K (1986) Effects of phenoxyacetic acids on the induction of chromosome aberrations in vitro and in vivo. Mutagenesis 1: 241 – 245.PubMedCrossRefGoogle Scholar
  73. Nagelsmit A, Van Vliet PW, Van der Wiel-Wetzels WAM, Weilard MJ, Strik JJTWA Pttervamger CF, van Sitter NJ (1979) Porphyrins as possible parameters for exposure to hexachlorocyclopentadiene, allylchloride, epichlorohydrin and Endrin. In: Strik JJTWA, Koeman JH (eds) Chemical porphyria in man. Elsevier, New York, pp 59 – 62.Google Scholar
  74. Nash RG, Kearney PC (1982) Agricultural applicator exposure to (2,4-dichlorophenoxy)acetic acid. ACS Pest Residues and Exposure 182: 119 – 132.CrossRefGoogle Scholar
  75. Nassif M, Brooke JP, Hutchinson DBA, Kamel OM, Savage E (1980) Studies with permethrin against body lice in Egypt. Pest Sci 11: 679 – 684.CrossRefGoogle Scholar
  76. National Research Council of Canada, (1974) Picloram: The effects of its use as a herbicide on environmental quality. NRCC No 13684, Ottawa, Canada.Google Scholar
  77. Nigg HN, Stamper JH (1983) Exposure of Florida airboat aquatic weed applicators to (2,4-dichlorophenoxy)acetic acid. Chemosphere 12: 209–215CrossRefGoogle Scholar
  78. Nigg HN, Stamper JH (1984) Field studies: Methods overview. Proc Symp on Risk Assessment of Agricultural Field Workers Due to Pesticide Dermal Exposure. Vol 32, ACS, Washington, DC. 664.Google Scholar
  79. Nolan RJ, Freshour NL, Kastl PE, Saunders JH (1984) Pharmacokinetics of picloram in male volunteers. Toxicol Appl Pharmacol 76: 264 – 269.PubMedCrossRefGoogle Scholar
  80. Notten WRF, Henderson PT (1977) The interaction of chemical compounds with the functional state of the liver. I. Alteration in the metabolism of xenobiotic compounds and D-glucuronic acid path. Int Arch Occup Environ Hlth 38:197– 297.Google Scholar
  81. Ockner RK, Schmid R (1961) Acquired porphyria in man and rat due to hexachlorobenzene intoxication. Nature 189: 449 – 450.CrossRefGoogle Scholar
  82. Osterman-Golkar S, Ehrenberg L, Segerback D, Hallstrom I (1976) Evaluation of genetic risks of alkylating agents. II. Haemoglobin as a dose monitor. Mutat Res 34: 1 – 10.PubMedGoogle Scholar
  83. Ottervanger CF, van Sitter NJ (1979) Relation between anti-12-hydroxyendrin excretion and enzyme induction in workers involved in the manufacture of endrin. In: Strik JJTWA and Koeman JH (eds) Chemical porphyria in man. Elsevier, New York, pp 123 – 129.Google Scholar
  84. Perera FP, Weinstein IB (1982) Molecular epidemiology and carcinogen-DNA adduct detection: New approaches to studies of human cancer causation. J Chronic Dis 35: 581–600PubMedCrossRefGoogle Scholar
  85. Perera FP (1988) The significance of DNA and protein adducts in human biomonitoring studies. Mutat Res 205: 271 – 282.CrossRefGoogle Scholar
  86. Perera FP, Santella RM, Brenner D, Poirier MC, Munshi AA, Fischman HK, Van Ryzin J (1987) DNA adducts, protein adducts and sister chromatid exchange in cigarette smokers and non-smokers. J National Cancer Inst 79: 449 – 456.Google Scholar
  87. Pilinskaia MA (1985) Incidence of chromosome aberrations in hothouse workers and the in vitro sensitivity of their lymphocytes to the cytogenetic action of dimatif. Tsitologiia I Genetika 19: 124 – 128.PubMedGoogle Scholar
  88. Pilinskaia MA (1986) Cytogenetic activity of metabolites of pesticides representing different classes of chemical compounds. Tsitologiia I Genetika 20: 143 – 145.PubMedGoogle Scholar
  89. Poland A, Smith D, Metter G, Passik P (1971) A health survey of workers in a 2,4- D and 2,4,5-T plant with special attention to chloracne, porphyria cutanea tarda and psychological parameters. Arch Environ Hlth 22: 316 – 327.Google Scholar
  90. Proudfoot AT, Stewart MS, Levitt T, Widdop B (1979) Paraquat poisoning: Significance of plasma paraquat concentrations. Lancet 2: 330 – 332.PubMedCrossRefGoogle Scholar
  91. Que Hee SS, Igwe OJ, Clark CS (1986) Thioether excretion of workers in a wastewater facility receiving pesticide wastes. In: Ho MH, Dillon HK (eds) Biological monitoring of exposure to chemicals. Wiley, New York, pp 219 – 224.Google Scholar
  92. Rashid KA, Mumma RO (1986) Screening pesticides for their ability to damage bacterial DNA. J Environ Sci Hlth 21: 319 – 334.CrossRefGoogle Scholar
  93. Richardson RJ, Dudek BR (1983) Neurotoxic esterase, characterization and potential for a protective screen for exposure to neuropathic organophosphates. In: Miyamota J (ed) Proc IUPAC Pest Chem. Congr on Human Welfare and Environment. Pergamon Press, New York, p 481.Google Scholar
  94. Rita P, Reddy PP, Reddy SV (1987) Monitoring of workers occupationally exposed to pesticides in grape gardens of Andhra Pradesh. Environ Res 44: 1 – 5.PubMedCrossRefGoogle Scholar
  95. Roan C, Morgan D, Cook N, Paschal E (1969) Blood cholinesterases, serum parathion concentrations and urine p-nitrophenol concentrations in exposed individuals. Bull Environ Contamin Toxicol 4: 362 – 367.CrossRefGoogle Scholar
  96. Rupa DS, Reddy PP, Reddi OS (1989) Frequencies of chromosomal aberrations in smokers exposed to pesticides in cotton fields. Mutat Res 222: 37 – 41.PubMedCrossRefGoogle Scholar
  97. Rupa DS, Rita P, Reddy PP, Reddi OS (1988) Screening of chromosomal aberrations and sister chromatid exchanges in peripheral lymphocytes of vegetable garden workers. Hum Toxicol 7: 333 – 336.PubMedCrossRefGoogle Scholar
  98. Rynard SM (1990) Urine mutagenicity assays. In: Hulka BS, Wilcosky TC, Griffith JD (eds) Biological markers in epidemiology. Oxford Univ Press, New York, pp 56 – 77.Google Scholar
  99. Schwartz GG (1990) Chromosome aberrations. In: Hulka BS, Wilcosky TC, Griffith JD (eds) Biological markers in epidemiology. Oxford Univ Press, New York, pp 147 – 172.Google Scholar
  100. See RH, Dunn BP, San RH (1990) Clastogenic activity in uring of workers occupationally exposed to pesticides. Mutat Res 241: 251 – 259.PubMedCrossRefGoogle Scholar
  101. Seutter-Berlage F, Van Dorp HL, Kosse HJJJ, Hoog Antink JMT, Wagenaars-Zehers MAP (1979) The estimation of mercapturic acids and other thioethers in urine. In: Strik JJTWA, Koeman JH (eds) Chemical porphyria in man. Elsevier, New York, pp 225 – 232.Google Scholar
  102. Shane BS, Scarlett-Kranz JM, Reid WS, Lisk DJ (1988) Mutagenicity of urine from greenhouse workers. J Toxicol Environ Hlth 24: 429 – 437.CrossRefGoogle Scholar
  103. Shirasu Y, Moriya M, Tezuka H, Teramoto S, Ohta T, Inoue T (1984) Mutagenicity of pesticides. Environ Sci Res 31: 617 – 624.Google Scholar
  104. Simpson GR, Higgins V, Chapman I, Bermingham S (1978) Exposure of council and forestry workers to 2,4,5-T. Med J Aust 2: 536 – 537.PubMedGoogle Scholar
  105. Sinclair PR, Bement WJ, Bonkovsky HL, Lambrecht RW, Fezza JE, Sinclair JF (1971) Uroporphyrin accumulation produced by halogenated biphenyls in chick embryo hepatocytes. Reversal of the accumulation by piperonyl butoxide. Biochem J 237: 63 – 71.Google Scholar
  106. Sinclair PR, Sinclair JR, Bement WJ, Lambrecht RW, Bonkovsky HL (1986) Induction of porphyria in cultured chick embryo hepatocytes by halogenated aromatic compounds. IARC Sci Publ 77: 535 – 542.PubMedGoogle Scholar
  107. Sorsa M, Falck K, Norppa H, Vainio H (1981) Monitoring genotoxicity in the occupational environment. Scand J Work Environ Hlth 7: 61 – 65.Google Scholar
  108. Staiff DC, Comer SW, Armstrong JF, Wolfe HR (1975) Exposure to the herbicide paraquat. Bull Environ Contam Toxicol 14: 334 – 340.PubMedCrossRefGoogle Scholar
  109. Strik JJTWA (1973) Species differences in experimental porphyria caused by po- lyhalogenated aromatic compounds. Enzyme 16: 224–230PubMedGoogle Scholar
  110. Strik JJTWA (1979a) Porphyrins in urine as an indication of exposure to chlorinated hydrocarbons. Ann NY Acad Sci 390: 308 – 310.Google Scholar
  111. Strik JJTWA (1979b) The occurrence of chronic hepatic porphyria in man caused by halogenated hydrocarbons. In: Strik JJTWA, Koeman JH (eds) Chemical porphyria in man. Elsevier, New York, pp 3 – 9.Google Scholar
  112. Swan AAB (1969) Exposure of spray operators to paraquat. Br J Ind Med 26: 322– 329.Google Scholar
  113. Tarrant RF, Ore C, Allard J (1972) Arsenic levels in urine of forest workers applying silvicide. Arch Environ Hlth 24: 277 – 280.Google Scholar
  114. Taylor W, Gurgis H, Stewart W (1969) Investigation of a population exposed to organomercurial seed dressing. Arch Environ Hlth 19: 505.Google Scholar
  115. Vainio H, Sorsa M, Falck K (1984) Bacterial urinary assay in monitoring exposure to mutagens and carcinogens. IARC Sci Publ 59: 247–285PubMedGoogle Scholar
  116. Vainio H (1985) Current trends in the biological monitoring of exposure to carcinogens. Scand J Work Environ Hlth 11: 1 – 6.CrossRefGoogle Scholar
  117. Vandekar M, Plestina R, Wilhelm K (1971) Toxicity of carbamates for mammals. Who Bull No 44, WHO, Geneva, p 241.Google Scholar
  118. van Houdt JJ, Fransman LG, Strik JJ (1983) Epidemiological case control study in personnel exposed to 2,4,5-T, TWA. Chemosphere 12: 575.CrossRefGoogle Scholar
  119. Vine MF (1990) Micronuclei. In: Hulka BS, Wilcosky TC, Griffith JD (eds) Biological markers in epidemiology. Oxford Univ Press, New York, pp 125 – 146.Google Scholar
  120. Vrij-Standhardt WG, Strik JJTWA, Ottervanger CF, van Sihert NJ (1979) Urinary D-glucaric acid and urinary total porphyrin excretion in workers exposed to endrin. In: Strik JJTWA, Koeman JH (eds) Chemical porphyria in man. Elsevier, New York, pp 113 – 121.Google Scholar
  121. WHO (World Health Organization) (1975) Paraquat, Data sheets on pesticides, No 4. Unpubl document, WHO/Food and Agric Organ (quoted in Kaloyanova and El Batawi, 1991 ).Google Scholar
  122. WHO (1984) 2,4-Dichlorphenoxy acetic acid (2,4-D). Environ Health Criteria No 29, Geneva, p 151.Google Scholar
  123. WHO (1986) Organophosphorous insecticides. A general introduction. Environ Health Criteria No 63, Geneva.Google Scholar
  124. Wilcosky TC (1990) Criteria for selecting and evaluating markers. In: Hulka BS, Wilcosky TC, Griffith JD (eds) Biological markers in epidemiology. Oxford Univ Press, New York, pp 28 – 55.Google Scholar
  125. Wilcosky TC, Griffith J (1990) Applications of biological markers. In: Hulka BS, Wilcosky TC, Griffith JD (eds) Biological markers in epidemiology. Oxford Univ Press, New York, pp 16 – 27.Google Scholar
  126. Wilcosky TC, Rynard SM (1990) Sister chromatid exchanges. In: Hulka BS, Wilcosky TC, Griffith JD (eds), Biological markers in epidemiology. Oxford Univ Press, New York, pp 105 – 124.Google Scholar
  127. Winterlin WL, Kilgore WW, Mourer CR, Sarah RS (1984) Worker reentry study for captan applied to strawberries in California. J Agric Food Chem 32: 664– 672.Google Scholar
  128. Winterlin WL, Kilgore WW, Mourer R, Hall J, Hadapp D (1986) Worker reentry into captan-treated grape fields in California. Arch Environ Contam Toxicol 15: 301 – 311.PubMedCrossRefGoogle Scholar
  129. Wojeck GA, Price JF, Nigg HN, Stamper JH (1983) Worker exposure to paraquat and diquat. Arch Environ Contam Toxicol 12: 65 – 70.PubMedCrossRefGoogle Scholar
  130. Wolfe H, Durham WF, Armstrong JF (1970) Urinary excretion of insecticide metabolites. Arch Environ Hlth 21: 711 – 716.Google Scholar
  131. Wright NA, Yeoman WB, Hale KA (1978) Assessment of severity of paraquat poisoning. Br Med J 2: 396.PubMedCrossRefGoogle Scholar
  132. Yang RSH, Rauckman EJ (1987) Toxicological studies of chemical mixtures of environmental concern at the National Toxicology Program: Health effects of groundwater contaminants. Toxicology 47: 15 – 34.PubMedCrossRefGoogle Scholar
  133. Yoder J, Watson M, Benson W (1973) Lymphocyte chromosome analysis of agricultural workers during extensive occupational exposure to pesticides. Mutat Res 21: 335 – 340.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • M. A. Brewster
    • 1
    • 2
  • B. S. Hulka
    • 3
  • T. L. Lavy
    • 4
  1. 1.Departments of Pathology and PediatricsUniversity of Arkansas for Medical SciencesLittle RockUSA
  2. 2.Arkansas Reproductive Health Monitoring SystemArkansas Childrens HospitalLittle RockUSA
  3. 3.Department of EpidemiologyUniversity of North CarolinaChapel HillUSA
  4. 4.Department of AgronomyUniversity of ArkansasFayettevilleUSA

Personalised recommendations