Pollen Mediated Indirect Gene Transfer to Dicots and Monocots

  • Dieter Hess
  • Markus Iser Angela Schmid
  • Sabine Stegmaier
  • Klaus Dressler
Conference paper


Scientists will often be well advised to follow Nature as close as possible. Therefore, Hess proposed as early as 1974 to use Nature’s masterly elaborated pollen transfer system in introducing exogenous gene material into higher plants. Beginning with the same year (Hess et al., 1974), in the following two decades experimental data on phenotypical, biochemical and formal genetic levels could be obtained, which could be interpreted with a pollen mediated gene transfer. In most of these investigations, however, no molecular proof of gene transfer could be achieved as suitable methods were not available. The only exception were attempts to transfer an E.coli transferase (E.C. gene to Petunia: Using Southern blot analysis, uptake and integration of transferase DNA into Petunia DNA could be demonstrated. The limited amount of DNA available from earlier experiments, however, allowed cleavage using only one endonuclease so that a correct restriction analysis was not possible (Hess, 1986, Hess and Dressier, unpublished data). To summarize: in all these early investigations convincing molecular evidence for a gene transfer could not be achieved (review Hess, 1987).


Gene Transfer Pollen Tube Southern Blot Analysis Agrobacterium Tumefaciens Petunia Hybrida 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balzer, H.-J. DNA-Methylierung in Weizen. Prien am Chiemsee: Intemann; 1990.Google Scholar
  2. Donn, G.; Nilges, M.; Morocz, S. Stable transformation of maize with a chimaeric, modified phosphinothricin-acetvltransferasegene from Streptomvcesviridochromogenes. Abstr. Vllth Int. Congress Plant Tissue and Cell Culture, Amsterdam. 1990: p. 53.Google Scholar
  3. Gordon-Kamm, W.; Spencer, T.; Mangano, M.; Adams, T.; Daines, R.; Start, W.; O’Brien, J.; Chambers, C.; Adams, W.; Willets, N.; Rice, T.; Mackey, C.; Krueger, R.; Kausch, A.; Lemaux, P. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603 – 618; 1990PubMedCrossRefGoogle Scholar
  4. Hess, D. Neue Methoden der genetischen Rekombination. Biol. Rdsch. 12: 297 – 311; 1974.Google Scholar
  5. Hess, D. Genetic effects in Petunia hvbrida induced by pollination with pollen treated with jac transducing phages. Z. Pflanzenphysiol. 90: 119 – 132; 1978Google Scholar
  6. Hess, D. Genetic effects in Petunia hvbrida induced by pollination with pollen treated with gal transducing phages. Z. Pflanzenphysiol. 93: 429 – 436; 1979Google Scholar
  7. Hess, D. The pollen system of gene transfer. In: Horn, W.; Jensen, C. J.; Odenbach, W.; Schieder, O. eds. Genetic Manipulation and Plant Breeding. Berlin: De Gruyter; 1986: p. 803 – 811.Google Scholar
  8. Hess, D. Pollen based techniques in genetic manipulation. Int. Rev. Cytol. 107: 367 – 395; 1987CrossRefGoogle Scholar
  9. Hess, D. Pflanzenphysiologie. 8th ed. Stuttgart: Ulmer; 1988.Google Scholar
  10. Hess, D. Gene technology and plant breeding. In: Sinha, S. K.; Sane, P. V.; Bhargava, S. C.; Agrawal, P. K. eds.: Proc. Int. Congress Plant Physiol., New Delhi 1990: p. 34 – 59.Google Scholar
  11. Hess, D.; Dressier, K. Bacterial transferase activity expressed in Petunia progenies. J. Plant Physiol. 116: 61 – 272; 1984.Google Scholar
  12. Hess, D.; Dressier, K. Tumor transformation of Petunia hvbridavia pollen co-cultured with Agrobacterium tumefaciens. Bot. Acta 102: 202 – 207; 1989.Google Scholar
  13. Hess, D.; Kiefer, S. Induction of bacterial nitrogenase activity in in vitro associations: a comparison of the inducing capabilities of Triticum aestivum and Sorghum nigricans. Z. Pflanzenphysiol. 101: 15 – 24; 1981.Google Scholar
  14. Hess, D.; Lorz, H.; Weissert, E.M. Uptake of bacterial DNA into swelling and germinating pollen grains of Petunia hvbrida and Nicotiana tabacum. Z. Pflanzenphysiol. 74: 52 – 63; 1974.Google Scholar
  15. Hess, D.; Dressier, K.; Konle, S. Gene transfer in higher plants using pollen as vectors: Bacterial transferase activity expressed in Petunia progenies. In: Chapman, G. P.; Mantell,S. H.; Daniels, R. W. eds. Experimental Manipulation of Ovule Tissues. London: Longman; 1986 p. 224 – 239.Google Scholar
  16. Hess, D.; Dressier, K.; Nimmrichter, R. Transformation experiments by pipetting Agrobacterium into the spikelets of wheat (Triticum aestivum L.). Plant Sci. 72: 233 – 244; 1990.CrossRefGoogle Scholar
  17. Ren, Z. I.; Lelley, T. Hybrid necrosis in Triticale and the expression of necrosis genes in allopolyploids. Theor. Appl. Genet. 77: 742 – 748; 1989.Google Scholar
  18. Rhodes, C.; Pierce, D; Mettler, I.; Mascarenhas, D.; Detmer, J. Genetically transformed maize plants from protoplasts. Science 240: 204 – 207; 1988.PubMedCrossRefGoogle Scholar
  19. Schmid, A.; Hess, D. Towards transgenic fungal resistant wheat: Transfer of stilbene synthase DNA to wheat using the indirect pollen system. Int. Conf. Genetic Engineering and Biotechnology Abstracts. Kathmandu: Nepal Biotechnol. Ass.; p. 36; 1991.Google Scholar
  20. Stachel, S. E.; Messens, E.; Van Montagu, M.; Zambryski, P. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624 – 629; 1985.CrossRefGoogle Scholar
  21. Sussmuth, J.; Dressier, K.; Hess, D. Agrobacterium-mediated transfer of the GUS gene into pollen of Petunia. Bot. Acta 104: 72 – 76; 1991.Google Scholar
  22. Van der Westhuizen, A.; Gliemeroth, A.; Wenzel, W.; Hess, D. Isolation and partial purification of an extracellular nuclease from pollen of Petunia hybrida. J. Plant Physiol. 131: 373 – 384; 1987.Google Scholar
  23. Van Lijsebettens, M.; Inze, D.; Schell, J.; Van Montagu, M. Transformed cell clones as a tool to study T-DNA integration mediated by Agrobacterium tumefaciens. J. Mol. Biol. 188: 129 – 145; 1986.PubMedCrossRefGoogle Scholar
  24. Vasil, V.; Redway, F.; Vasil, I. K. Regeneration of plants from embryogenic suspension culture protoplasts of wheat (Triticum aestivum L). Bio/Technol. 8: 429 – 434; 1990.CrossRefGoogle Scholar
  25. Wagner, G.; Hess, D. In vitro-Befruchtunqen bei Petunia hvbrida. Z Pflanzenphysiol. 69: 262–269; 1973.Google Scholar
  26. Zerback, R.; Bokel, M.; Geiger, H.; Hess, D. A kaempferol-3-glucosylgalactoside and further flavonoids from pollen of Petunia hvbrida. Phytochemistry 28: 897 – 899; 1989a.CrossRefGoogle Scholar
  27. Zerback, R., Dressier, K.; Hess, D. Flavonoid compounds from pollen and stigma of Petunia hvbrida inducers of the vir region of the Agrobacterium tumefaciens Ti plasmid. Plant Sci. 62: 83 – 91; 1989bCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • Dieter Hess
  • Markus Iser Angela Schmid
  • Sabine Stegmaier
  • Klaus Dressler

There are no affiliations available

Personalised recommendations