Skip to main content

Constraint and Stress State Effects in Ductile Fracture

  • Chapter
Book cover Topics in Fracture and Fatigue

Abstract

The mechanics and mechanisms of ductile fracture are reviewed, emphasizing the effect of multi-axial states of stress on the mechanisms of hole nucleation, growth, and coalescence. This provides a basis for a discussion of crack extension by ductile failure mechanisms, with particular reference to ways in which the constraint can be quantified in a two parameter constraint based fracture mechanics methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Al-Ani, A. and Hancock, J. W. (1991). J. Mech. Phys Solids 1:23–43.

    Article  Google Scholar 

  • Amizigo, J. C. Some Mathematical Problems of Elastic-Plastic Crack Growth (editor, Burridge R.) FVacture Mechanics 12:125.

    Google Scholar 

  • Anand, L. and Spitzig. (1980) J. Mech. Phys. Solids, 28:113.

    Article  Google Scholar 

  • Argon, A.S., Im and Safoglu (1975) Metallurgical Transactions, 6A:825–837.

    Google Scholar 

  • Asaro, R. J and Rice, J. R. (1977). J. Mech. Phys. Solids, 25:309–338.

    Article  MATH  Google Scholar 

  • A.S.T.M. (1983). Standard Methods for Plane Strain Toughness Testing of Metallic Materials, E399, 83:487–511.

    Google Scholar 

  • A.S.T.M. (1987). A Standard Method for Jlc, a Measure of Fracture Toughness, E813–88, 29:968–990.

    Google Scholar 

  • Beremin, F. M. (1983). Met Trans, A, 24A:2272–2287.

    Google Scholar 

  • Berg, C. A. Proc 4th U.S. National Congress of Applied Mechanics, Berkeley, CA editor, Rosenberg, R. M., ASME.

    Google Scholar 

  • Berg, C. A. (1970). In Kanninen, M., Adler, W. F., Rosenfield, A. R. and Jaffee, R.I., editors, Inelastic Behavior of Solids, pages 171–210, McGraw- Hill, New York.

    Google Scholar 

  • Betegón, C. PhD Thesis, Department of Construction, University of Oviedo, Spain.

    Google Scholar 

  • Betegón, C. and Hancock, J. W. Fracture Behavior and the Design of Materials and Structures”, ECF 8, 2:999–1002, Firrao, D., editor, EMAS UK.

    Google Scholar 

  • Bilby, B. A., Cardew, G. E., Goldthorpe, M. R. and Howard, I. C. (1987). The Stability of Cracks in Tough Materials, Department of Mechanical Engineering Report, University of Sheffield.

    Google Scholar 

  • Bishop, J.F.W. and Hill R. (1951). Phil. Mag. 42:414–427.

    MathSciNet  MATH  Google Scholar 

  • Bridgman, P. W. (1952). Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York.

    MATH  Google Scholar 

  • Brown, L. M. and Embury, J. D. (1973). Inst. Met., 1:164.

    Google Scholar 

  • Budiansky, B., Hutchinson, J.W. and Slutsky, S. (1981). In Hopkins, H. G. and Sewell, M. J., editors, The Mechanics of Solids, the Rodney Hill 60th Anniversary Volume, Pergamon Press Oxford, pages 13–45.

    Google Scholar 

  • Burke, M. A. and Nix, W. D. (1979). Int. J. Solids and Structures, 15:379–393.

    Article  MATH  Google Scholar 

  • Cardew, G. E., Goldthorpe, M. D., Howard, I.C. and Kfouri A. P. (1984). in Fundamentals of Deformation and Fracture, (Eshelby Memorial Symposium), Cambridge University Press, 456.

    Google Scholar 

  • Clausing, D. P. (1970). Int. J. Fracture Mech., 6(l):71.

    Google Scholar 

  • Cowper and Onat (1962). Proc 4th US National Congress on Applied Mechanics, 2:1023, ASME, New York.

    Google Scholar 

  • Drucker, D. C. (1960). J. Mecan., 3:253–249.

    MathSciNet  Google Scholar 

  • Edelson, B. I. and Baldwin, W. M. Jr. (1962). Trans. QASM, 55:230.

    Google Scholar 

  • Eshelby, J. D. (1957). Proc. Roy. Soc. A241:376–396.

    MathSciNet  Google Scholar 

  • Ewing D. J. F. (1968). J. Mech. Phys. Solids, 16:305.

    Google Scholar 

  • Ewing, D. J. F. and Hill, R. (1967). J. Mech. Phys. Solids, 15:115.

    Article  Google Scholar 

  • Goodier, J. N. (1933). ASME Applied Mechanics Magazine, 55:39–44.

    Google Scholar 

  • Goods, S. H. and Brown, L. M. (1979). Acta Metallurgica, 27:1–15.

    Article  Google Scholar 

  • Green, A. P. (1953). Quart. J. Mech. Appl. Math., 6:223.

    Article  Google Scholar 

  • Gurson, A. L. (1977). Trans. ASME Journal of Engineering Materials Technology, 99:2–15.

    Article  Google Scholar 

  • Haigh (1923). Thermodynamic Theory of Fatigue and Hysterisis in Met¬als, Report of the Brit. Assoc., page 358.

    Google Scholar 

  • Hancock, J. W. and Brown, D. K. (1983). J. Mech. Phys. Solids, 31:1.

    Article  Google Scholar 

  • Hancock, J. W. and Cowling, M. J. (1980). Metal Science, 293.

    Google Scholar 

  • Hancock, J. W. and Mackenzie, A. C. (1977). J. Mech. Phys. Solids, 14:147–169.

    Google Scholar 

  • Hancock, J. W., Reuter, W. A. and Parks, D. M. (1991). ASTM Symposium on Constraint Effects in Fracture, Indianapolis.

    Google Scholar 

  • Hill, R. (1950). The Mathematical Theory of Plasticity, Oxford, (Clarendon Press).

    MATH  Google Scholar 

  • Huang, Y., Hutchinson, J. W. and Tvergaard, V. (1991). J. Mech. Phys. Solids, 39:223–241.

    Article  Google Scholar 

  • Hutchinson, J. W. (1968a). J. Mech. Phys. Solids, 16:13–32.

    Article  MATH  Google Scholar 

  • Hutchinson, J. W. (1968b). J. Mech. Phys. Solids, 16:337–348.

    Article  Google Scholar 

  • Hutchinson, J. W. (1989). Micro-Mechanics of Damage in Deformation and Fracture, Technical University of Denmark.

    Google Scholar 

  • Hutchinson, J. W. (1981). Int. J. Solids and Structures, 17:451–470.

    Article  MATH  Google Scholar 

  • Johnson, W., Sowerby, R. and Venter, R. D (1982). Plane Strain Slip Line Fields for Metal Deformation Processes, Pergamon Press, Oxford.

    MATH  Google Scholar 

  • Kirkcaldy, D. (1860). Results of a Comparative Inquiry into the Com¬parative Strengths and other Properties of Wrought Iron and Steel, Proc. Scot. Shipbuilders Assoc., Appendix, page 74.

    Google Scholar 

  • Kfouri, A. P. (1986). Int. J. Fracture, 30:301.

    Article  Google Scholar 

  • Levers, P. S. and Radon, J. C. (1983). Int. J. Fracture, 19:311–325.

    Article  Google Scholar 

  • Lode, W. (1926). Z. Physik, 36:913–939.

    Article  Google Scholar 

  • Ludwik, P. and Scheu, R. Stahl und Eisen, 43:999–1001.

    Google Scholar 

  • Larsson, S. G. and Carlsson, A. J. (1973). J. Mech. Phys. Solids, 21:263–277.

    Article  Google Scholar 

  • Levy, N., Marcal, P. V., Ostergren, W. J. and Rice, J. R. (1971). Int. J. Fracture Mech. 7:143.

    Google Scholar 

  • Li, Y. and Wang, Z. (1986). Scientia Sinica, A29:942.

    Google Scholar 

  • Li, F. Z., Shih, C. F. and Needleman, A. (1985). Eng. Fract. Mech., 21:405–421.

    Article  Google Scholar 

  • Mackenzie, A. C., Hancock, J. W. and Brown, D. K. (1977). J. Engineering Fracture Mechanics 9:167–188.

    Article  Google Scholar 

  • McClintock, F. A. (1968). J. Appl. Mech., 35:362–371.

    Google Scholar 

  • McClintock, F. A. (1967). in Ductility, 255–278, A.S.M., Ohio, U. S. A.

    Google Scholar 

  • McClintock, F. A. (1969). Plasticity Aspects of Fracture, in Fracture, an Advanced Treatise, Liebowitz, H., editor, Academic Press, New York, pages 47–225.

    Google Scholar 

  • McClintock, F. A. and Rhee, S. S. (1962). Proc. 4th US National Congress on Applied Mechanics, 2:1002.

    Google Scholar 

  • McClintock, F. A., Kaplan, S. A. and Berg, C. A. (1966). Int. J. Fract. Mech., 29(4):614.

    Google Scholar 

  • McMeeking, R. M. and Parks, D. M. (1979). in Elastic Plastic Fracture, ASTM STP 668, Landes, J. D. et al., editors, ASTM Philadelphia, 175–194.

    Google Scholar 

  • McMeeking, R. M. and Rice, J. R. (1975). Int. J. Solids and Structures 11, 601–616.

    Article  MATH  Google Scholar 

  • Nagpal, V., McClintock, F. A., Berg, C. A. and Subudhi, M. (1973). In Sawczuk, A., editor, Foundations of Plasticity, Noordhooo, Leyden, page 365.

    Google Scholar 

  • Neimark, J. E. (1959). The Initiation of Ductile Fracture in Tension, ScD Thesis MIT, Cambridge, Mass.

    Google Scholar 

  • Needleman, A. J. and Rice, J. R. (1978). Limits to Ductility Set by Localization, In Koisteinen and Wang, editors, Mechanics of Sheet Metal Forming, Plenum Press, pages 237–265.

    Google Scholar 

  • Needleman, A. and Tvergaard, V. (1984). Finite Element Analysis of Localization in Plasticity, Chapter 3 of Finite Elements: Special Problems in Solid Mechanics, volume V, Oden, J. T. and Carey, G. F., editors, Prentice-Hall, 94.

    Google Scholar 

  • Norris, Jr. D. M., Moran, B., Scudder, J. K. and Quinones, R. F. (1978). J. Mech. Phys. Solids, 26:1–19.

    Article  Google Scholar 

  • O’Dowd, N. P. and Shih, C. F. (1991a). J. Mech. Phys. Solids (in press).

    Google Scholar 

  • O’Dowd, N. P. and Shih, C.F. (1991b). J. Mech. Phys. Solids (in press).

    Google Scholar 

  • Ohno, N. and Hutchinson, J. W. (1984). J. Mech. and Phys. of Solids, 32:63–85.

    Article  MATH  Google Scholar 

  • Onat, E. T. and Prager, W. (1954). J. Appi. Phys., 25:491–493.

    Article  MathSciNet  MATH  Google Scholar 

  • Orr, J. and Brown, D.K. (1974). Engineering Fracture Mechanics, 6:261–274.

    Article  Google Scholar 

  • Orowan, E. (1945). TVans. Inst. Eng. Shipbuilders Scot, 1063:165.

    Google Scholar 

  • Parry, T. V. and Wronski, A. S. (1985). J. Mat. Sci., 20:2141–2147.

    Article  Google Scholar 

  • Parry, T. V. and Wronski, A. S. (1986). J. Mat. Sci., 21:4451–4455.

    Article  Google Scholar 

  • Parks, D. M. (1991). Engineering Methodologies for Assessing Crack Front Constraint in Proc. Spring Meeting, S.E.M., Milwaukee.

    Google Scholar 

  • Parks, D. M. (1977). Computer Methods in Appl. Mech. and Eng., 12:353.

    MathSciNet  MATH  Google Scholar 

  • Parks, D. M. (1991a). Defect Assessment in Components-Fundamentals and Applications, ESIS/EGF9, Blauel, J. G. and Schwalbe, K. H., editors, Mechanical Engineering Publications, London, pages 205–231.

    Google Scholar 

  • Prager, W. and Hodge, P. G. (1951). Theory of Perfectly Plastic Solids, Wiley, New York.

    MATH  Google Scholar 

  • Prandtl, L. (1920). Nachr. Ges. Wiss., Gottingen, 74. Rice, J. R. (1968). J. Appl. Mech., 35:379–386.

    Google Scholar 

  • Rice, J. R. (1968a). Mathematical Analysis in the Mechanics of FYacture, in Liebowitz, H., editor, Fracture, an Advanced Treatise, 2, Academic Press, New York.

    Google Scholar 

  • Rice, J. R. (1976). The Localization of Plastic Deformation, In Koiter, W., editor, Theoretical and Applied Mechanics, North-Holland 207.

    Google Scholar 

  • Rice, J. R. and Johnson, M. A. (1970). In Kanninen, M., Adler, W. F., Rosenfield, A. R. and Jaffee, R. I., editors, Inelastic Behaviour of Solids, Bat telle, McGraw-Hill, New York, 641–672.

    Google Scholar 

  • Rice, J. R. and Rosengren, G. F. (1968). J. Mech. Phys Solids, 16:1–67.

    Article  MATH  Google Scholar 

  • Rice, J. R. and Tracey, D. M. (1969). J. Mechanics and Physics of Solids, 17:201–217.

    Article  Google Scholar 

  • Rice, J. R. and Tracey, D. M. (1973). In Numerical and Computational Methods in Structural Mechanics.

    Google Scholar 

  • Rice, J. R. and Tracey, D. M. (1974). J. Mech. Phys. Solids, 22:17–26.

    Article  Google Scholar 

  • Rudnicki, J. W. and Rice, J. R. (1975). J. Mech. Phys. Solids, 23:371–399.

    Article  Google Scholar 

  • Saje, M., Pan, J. and Needleman (1982). Void Nucleation in Porous Plastic Solids, Int. J. Fract., 19:163–182.

    Article  Google Scholar 

  • Sham, T.-L. (1991). Int. J. FVacture, 48, 81–102.

    Article  Google Scholar 

  • Shih, C. F. and German, M. D. (1981). Int. J. Fract., 17:27–43.

    Google Scholar 

  • Tipper, C. F. (1949). Metallurgia, 39:133–137.

    Google Scholar 

  • Thomason, P. F. (1968). J. Inst. Metals, 96:360.

    Google Scholar 

  • Thomason, P. F. (1968). Int. J. Mech. Sci., 10:501.

    Article  Google Scholar 

  • Thomason, P. F. in Sih, G. C., van Elst, H. C. and Broek, D., editors, Prospects of Fracture Mechanics, Nooordhoff International, pages 3–19.

    Google Scholar 

  • Thomson, R. D. and Hancock, J. W. (1984a). Int. Journal of Fracture, 24:209–228.

    Article  Google Scholar 

  • Thomson, R. D. and Hancock, J. W. (1984b). Int. Journal of FVacture, 26:99–112.

    Google Scholar 

  • Tracey, D. (1976). ASME J. Eng. Mats, and Tech., 98:146–151.

    Article  Google Scholar 

  • Tvergaard, V. and Needleman, A. (1984). Acta Metall., 32:157–169.

    Article  Google Scholar 

  • Tvergaard, V., Needleman, A. and Lo, K. K. (1981). J. Mech. Phys. Solids, 29:115.

    Article  MATH  Google Scholar 

  • Tvergaard, V. (1982). Journal of the Mechanics and Physics of Solids, 30:265–286.

    Article  MATH  Google Scholar 

  • Wang, Y. (1991a). PhD thesis department of Mechanical Engineering, MIT.

    Google Scholar 

  • Wang Y. (1991b). ASTM Symposium on Constraint Effects in Fracture, Indianapolis.

    Google Scholar 

  • Wang, Y. and Parks, D. M. (1991). Int. J. Fract. in press. Yamamoto, H. (1978). Int. J. Fracture, 14:347.

    Google Scholar 

  • Zok, F., Embury, J. D., Ashby, M. F. and Richmond, O. (1988). Proc Ninth Riso International Symposium on Metallurgy and Materials Science, Andersen, S. I. et al., editors, Mechanical and Physical Behavior of Metallic and Ceramic Composites, Riso, pages 517–526.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Hancock, J.W. (1992). Constraint and Stress State Effects in Ductile Fracture. In: Argon, A.S. (eds) Topics in Fracture and Fatigue. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2934-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2934-6_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7726-2

  • Online ISBN: 978-1-4612-2934-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics