The Basement Membrane Zone at the Dermal — Epidermal Junction of Human Skin

  • David T. Woodley
  • Scott McNutt


The epidermal basement membrane is an important interface between the cells of epidermis and the connective tissues.1–3 A variety of nutrients and signals must pass through this interface, carrying some messages from the blood to the epidermis and other messages from the epidermis to other structures. The basement membrane region must also function well in the attachment of the delicate cells of the epidermis to the strong fibers in the dermis. During embryogenesis and wound healing, the basement membrane acts as a scaffold affecting the organization of cell growth.


Basement Membrane Bullous Pemphigoid Epidermolysis Bullosa Papillary Dermis Lamina Densa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stanley JR, Woodley DT, Katz SI, Martin GR. The structure and function of basement membrane. J Invest Dermatol. 1982; 79:69–72.CrossRefGoogle Scholar
  2. 2.
    Briggaman RA, Wheeler CE. The epidermal-dermal junction. J Invest Dermatol. 1975;65:71–84.PubMedCrossRefGoogle Scholar
  3. 3.
    Woodley DT. The importance of the dermal-epidermal junction and recent advances. Dermatologica. 1987; 174:1–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Lavker RM, and Sun TT. Heterogeneity in epidermal basal keratinocytes: morphological and functional correlations. Science. 1982; 215:1239–1241.PubMedCrossRefGoogle Scholar
  5. 5.
    Delvoye P, Pierard D, Noel A, Nusgens B, Foidart JM, Lapiere CM. Fibroblasts induce assembly of the micromolecules of the basement membrane. J Invest Dermatol. 1988;90:276–282.PubMedCrossRefGoogle Scholar
  6. 6.
    Kelly DE. Fine structure of desmosomes, hemidesmosomes, and an adepidermal globular layer in developing newt epidermis. J Cell Biol. 1966; 28:51–72.PubMedCrossRefGoogle Scholar
  7. 7.
    Shienvold FL, Kelly DE. The desmosome: new fine structural features revealed by freeze-fracture techniques. Cell Tissue Res. 1976; 172:289–307.PubMedCrossRefGoogle Scholar
  8. 8.
    Ellison J, Garrod DR. Anchoring filaments of the amphibian epidermal-dermal junction traverse the basal lamina entirely from the plasma membrane of hemidesmosomes to the dermis. J Cell Sci. 1984;72:163–172.PubMedGoogle Scholar
  9. 9.
    McNutt NS. Ultrastructural comparison of the interface between epithelium and stroma in basal cell carcinoma and control human skin. Lab Invest. 1976; 35: 132–142.PubMedGoogle Scholar
  10. 10.
    Heaphy MR, Winkelmann RK. The human cutaneous basement membraneanchoring fibril complex: preparation and ultrastructure. J Invest Dermatol. 1977;68:177–186.PubMedCrossRefGoogle Scholar
  11. 11.
    Krawczyk WS, Wilgram GF. Hemidesmosome and desmosome morphogenesis during epidermal wound healing. J Ultrastruct Res. 1973;45:93–101.PubMedCrossRefGoogle Scholar
  12. 12.
    Gabbiani G, Chapponnier C, Huttner I. Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing. J Cell Biol. 1978; 76:561–568.PubMedCrossRefGoogle Scholar
  13. 13.
    Woodley DT, Peterson HD, Herzok SR, et al. Burn wounds resurfaced by cultured epidermal autografts show abnormal reconstitution of anchoring fibrils. JAMA. 1988;259:2566–2571.PubMedCrossRefGoogle Scholar
  14. 14.
    Compton CC, Gill JM, Bradford DA, Regauer S, Gallico GG, O’Connor NE. Skin regenerated from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after grafting. A light, electron microscope and immunohistochemical study. Lab Invest. 1989;60:600–612.PubMedGoogle Scholar
  15. 15.
    Yurchenco PD, Ruben GC. Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network. J Cell Biol. 1987;105:2559–2568.PubMedCrossRefGoogle Scholar
  16. 16.
    Palade GE, Farquhar MG. A special fibril of the dermis. J Cell Biol. 1965; 27: 215–214.PubMedCrossRefGoogle Scholar
  17. 17.
    Bruns RR. A symmetrical extracellular fibril. J Cell Biol. 1969;42:418–430.PubMedCrossRefGoogle Scholar
  18. 18.
    Kawanami O, Ferrans VJ, Roberts WC, Crystal RG, Fulmer JD. Anchoring fibrils: a new connective tissue structure in fibrotic lung disease. Am J Pathol. 1978;92:389–410.PubMedGoogle Scholar
  19. 19.
    Keene DR, Sakai LY, Lunstrum GP, Morris NP, Burgeson RE. Type VII collagen forms an extended network of anchoring fibrils. J Cell Biol. 1987; 104:611–621.PubMedCrossRefGoogle Scholar
  20. 20.
    Yoshiike T, Briggaman RA, Woodley DT, Gammon WR, Cronce DJ. Identification and partial characterization of a microthread-like filamentous network beneath human skin basement membrane zone. J Invest Dermatol. 1988; 90:620.CrossRefGoogle Scholar
  21. 21.
    Yoshiike T, Briggaman RA, Woodley DT, Gammon WR, Cronce DJ. Linkin, a newly recognized component of extracellular matrix associated with microthreadlike filamentous network beneath stratified squamous epithelium. J Invest Dermatol. 1992 (in press).Google Scholar
  22. 22.
    Briggaman RA, Yoshiike T, Woodley DT, Gammon WR, Cronce DJ. Linkin, a newly recognized component of extracellular matrix associated with microthreadlike filamentous network beneath stratified squamous epithelium. J Cell Biol. 1988; 107:590a.Google Scholar
  23. 23.
    Fine JD, Couchman JR. Chondroitin-6-sulfate-containing proteoglycan: a new component of human skin dermoepidermal junction. J. Invest Dermatol. 1988; 90:283–288.PubMedCrossRefGoogle Scholar
  24. 24.
    Folkman, J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I. A heparin-binding angiogenic protein—basic fibroblast growth factor—is stored within basement membrane. Am J Pathol. 1988; 130:393–400.PubMedGoogle Scholar
  25. 25.
    Gonzalez A-M, Buscaglia M, Ong M, Baird A. Distribution of basic fibroblast growth factor in the 18-day rat fetus: localization in the basement membranes of diverse tissues. J Cell Biol. 1990; 110:753–765.PubMedCrossRefGoogle Scholar
  26. 26.
    Smith LI, Sakai LY, Burgeson RE, Holbrook KA. Ontogeny of structural components at the dermal-epidermal junction in human embryonic and fetal skin: the appearance of anchoring fibrils and type VII collagen. J Invest Dermatol. 1988; 90:480–485.PubMedCrossRefGoogle Scholar
  27. 27.
    Lane AT, Helm KF, Goldsmith LA. Identification of bullous pemphigoid, pemphigus, laminin and anchoring fibril antigens in human fetal skin. J Invest Dermatol. 1985;84:27–30.PubMedCrossRefGoogle Scholar
  28. 28.
    Eady RAJ. The basement membrane. Interface between the epithelium and the dermis: structural features. Arch Dermatol. 1988; 124:709–712.PubMedCrossRefGoogle Scholar
  29. 29.
    Holbrook KA. The biology of human fetal skin at ages related to prenatal diagnosis. Pediatr Dermatol. 1983; 1:97–111.PubMedCrossRefGoogle Scholar
  30. 30.
    Kleinman HK, Klebe RJ, Martin GR. Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol. 1981; 88:473–485.PubMedCrossRefGoogle Scholar
  31. 31.
    Timpl R, Martin GR: Components of basement membranes. In: Furthmayr H, ed. Immunochemistry of the Extracellular Matrix. vol. II. Fla: Boca Raton; CRC Press.Google Scholar
  32. 32.
    Fine JD. The skin basement membrane zone. In: Callen JP, ed. Advances in Dermatology, vol 2. Chicago: Year Book Medical Publisher; 1987:283–304.Google Scholar
  33. 33.
    Jordon RE, Beutner EH, Witebsy E, Blumental G, Hale WL, Lever WF. Basement membrane zone antibodies in bullous pemphigoid. JAMA. 1967; 200:751–756.PubMedCrossRefGoogle Scholar
  34. 34.
    Regnier M, Vaigot P, Michel S, Prunieras M. Localization of bullous pemphigoid antigen in isolated human keratinocytes. J Invest Dermatol. 1985; 85:187–190.PubMedCrossRefGoogle Scholar
  35. 35.
    Westgate GE, Weaver AC, Couchman JR. Bullous pemphigoid antigen localization suggests an intracellular association with hemidesmosomes. J Invest Dermatol. 1985;84:218–244.PubMedCrossRefGoogle Scholar
  36. 36.
    Klatle DH, Kurpakus MA, Grelling KA, Jones JCR. Immunochemical characterization of three components of the hemisdesmosomes and their expression in cultured epithelial cells. J Cell Biol. 1989; 109:3377–3390.CrossRefGoogle Scholar
  37. 37.
    Mutasim DF, Takahashi Y, Ramzy LS, Anhalt GJ, Patel HP, Diaz LA. A pool of bullous pemphigoid antigen (s) is intracellular and associated with the basal cell cytoskeleton-hemidesmosome complex. J Invest Dermatol. 1985; 84:47–53.PubMedCrossRefGoogle Scholar
  38. 38.
    Schaumburg-Lever G, Rule RA, Schmidt-Ullrich B, Lever WF. Ultrastructural localization of in vivo bound immunoglobulins in bullous pemphigoid: a preliminary report. J Invest Dermatol. 1975;64:47–49.PubMedCrossRefGoogle Scholar
  39. 39.
    Holubar K, Wolff K, Konrad K, Beutner EH. Ultrastructural localization of immunoglobulins in bullous pemphigoid skin. J Invest Dermatol. 1975; 64:220–227.PubMedCrossRefGoogle Scholar
  40. 40.
    Woodley DT, Regnier M. Bullous pemphigoid antigen deposited on a millipore filter. Arch Dermatol Res. 1979;266:319–322.PubMedCrossRefGoogle Scholar
  41. 41.
    Woodley DT, Didierjean L, Regnier M, Saurat JH, Prunieras M. Bullous pemphigoid antigen synthesized in vitro by human epidermal cells. J Invest Dermatol. 1980;75:148–151.PubMedCrossRefGoogle Scholar
  42. 42.
    Stanley JR, Hawley-Nelson P, Yuspa SH, Shevach EM, Katz SI. Characterization of bullous pemphigoid antigen: a unique basement membrane protein of stratified squamous epithelia. Cell. 1981;24:897–904.PubMedCrossRefGoogle Scholar
  43. 43.
    Woodley DT, Saurat JH, Prunieras M, Regnier M. Pemphigoid, pemphigus, and Pr antigens in human keratinocytes grown on nonviable substrates. J Invest Dermatol. 1982; 79:23–29.PubMedCrossRefGoogle Scholar
  44. 44.
    Stanley JR, Yuspa SH. Specific epidermal protein markers are modulated during calcium-induced terminal differentiation. J Cell Biol. 1983; 96:1809–1814.PubMedCrossRefGoogle Scholar
  45. 45.
    Stanley JR, Woodley DT, Katz SI. Identification and partial characterization of pemphigoid antigen extracted from normal skin. J Invest Dermatol. 1984; 82: 108–111.PubMedCrossRefGoogle Scholar
  46. 46.
    Labib RS, Anhalt GJ, Patel HP, Mutasim DF, Diaz LA. Molecular heterogeneity of the bullous pemphigoid antigens as detected by immunoblotting. J Immunol. 1986;136:1231–1234.PubMedGoogle Scholar
  47. 47.
    Stanley JR, Tanaka T, Mueller S, Klaus-Kovtun V, Roop D. Isolation of complementary DNA for bullous pemphigoid antigen by use of patients’ autoantibodies. J Clin Invest. 1988; 82:1864–1870.PubMedCrossRefGoogle Scholar
  48. 48.
    Tidman MJ, Eady RAF. Hemidesmosome heterogeneity in junctional epidermolysis bullosa revealed by morphometric analysis. J Invest Dermatol. 1986; 86: 51–56.PubMedCrossRefGoogle Scholar
  49. 49.
    Timpl R, Rohde H, Gehron-Robey P, Rennard SI, Foidart J-M, Martin GR. Laminin—a glycoprotein from basement membrane. J Biol Chem. 1979; 254: 9933–9937.PubMedGoogle Scholar
  50. 50.
    Yamada KM. Fibronectin and other structural proteins, In: Hay ED, ed. Cell Biology of Extracellular Matrix. New York: Plenum Press, 1983:95–110.Google Scholar
  51. 51.
    Timpl R. Structure and biological activity of basement membrane proteins. Eur J Biochem. 1989;180:487–502.PubMedCrossRefGoogle Scholar
  52. 52.
    Stanley JR, Hawley-Nelson P, Yaar M, Martin GR, Katz SI. Laminin and bullous pemphigoid antigen are distinct basement membrane proteins synthesized by epidermal cells. J Invest Dermatol. 1982; 78:456–459.PubMedCrossRefGoogle Scholar
  53. 53.
    Woodley DT, Stanley JR, Reese MJ, O’Keefe EJ. Human dermal fibroblasts synthesize laminin. J Invest Dermatol. 1988; 90:679–683.PubMedCrossRefGoogle Scholar
  54. 54.
    Woodley DT, Rao CN, Hassell JR, Liotta LA, Martin GR, Kleinman HK. Interactions of basement membrane components. Biochim Biophys Acta. 1983; 761:278–283.PubMedGoogle Scholar
  55. 55.
    Paulsson M, Aumailley M, Deutzmann R, Timpl R, Beck K, Engel J. Lamininnidogen complex: extraction with chelating agents and structural characterization. Eur J Biochem. 1987;166:11–19.PubMedCrossRefGoogle Scholar
  56. 56.
    Gehlsen KR, Dillner L, Engvall E, Ruoslahti E. The human laminin receptor is a member of the integrin family of cell adhesion receptors. Science. 1988; 241:1228–1229.PubMedCrossRefGoogle Scholar
  57. 57.
    Terranova VP, Rohrbach DH, Martin GR. Role of laminin in the attachment of PAM 212 (epithelial) cells to basement membrane collagen. Cell. 1980; 22:719–726.PubMedCrossRefGoogle Scholar
  58. 58.
    Iwamoto Y, Robey FA, Graf J, Sasaki M, Kleinman HK, Yamada Y, Martin GR. YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science. 1987;238:1132–1134.PubMedCrossRefGoogle Scholar
  59. 59.
    Woodley DT, Bachmann PM, O’Keefe EJ. Laminin inhibits human keratinocyte migration. J Cell Physiol. 1988; 136:140–146.PubMedCrossRefGoogle Scholar
  60. 60.
    Clark RAF, Lanigan JM, Della Pelle P, Manseau E, Dvorak HF, Colvin RB. Fibronectin and fibrin provide a provisional matrix for cell migration during wound re-epithelialization. J Invest Dermatol. 1982; 70:264–269.CrossRefGoogle Scholar
  61. 61.
    Carlin B, Jaffe R, Binder B: Entactin, a novel basal lamina-associated sulfated glycoprotein. J Biol Chem. 1981; 256:5209–5214.PubMedGoogle Scholar
  62. 62.
    Timpl R, Dziadek M, Fujiwara W, Nowack H, Wick H. Nidogen: a new selfaggregating basement membrane protein. Eur J Biochem. 1983; 137:455–465.PubMedCrossRefGoogle Scholar
  63. 63.
    Caughman SW, Krieg T, Timpl R, Hintner H, Katz SI. Nidogen and heparan sulfate proteoglycan: detection of newly isolated basement membrane components in normal and epidermolysis bullosa skin. J Invest Dermatol. 1987; 89:547–550.PubMedCrossRefGoogle Scholar
  64. 64.
    Alstadt SP, Hebda PA, Chung AE, Eaglstein WH. The enhancement of epidermal cell attachment by basement membrane entactin. J Invest Dermatol. 1985; 84:353.Google Scholar
  65. 65.
    Timpl R, Martin GR, Bruckner P, Wick G, Wiedmann H. Nature of the collagenous proteins in a tumor basement membrane. Eur J Biochem. 1978; 84:43–52.PubMedCrossRefGoogle Scholar
  66. 66.
    Yaoita H, Foidart JM, Katz SI. Localization of the collagenous component of skin basement membrane. J Invest Dermatol. 1978; 70:191–193.PubMedCrossRefGoogle Scholar
  67. 67.
    Petersen MJ, Woodley DT, O’Keefe EJ. Cultured human keratinocytes synthesize and secrete type IV procollagen. Clin Res. 1988; 36:378A.Google Scholar
  68. 68.
    Woodley DT, Wynn KC, O’Keefe EJ. Type IV collagen and fibronectin enhance human keratinocyte thymidine incorporation and spreading in the absence of soluble growth factors. J Invest Dermatol. 1990;94:130–143.CrossRefGoogle Scholar
  69. 69.
    Timpl R, Wiedemann H, Van Delden V, Furthmayr H, Kuhn K. A network model for the organization of type IV collagen molecules in basement membranes. Eur J Biochem. 1981;120:203–211.PubMedCrossRefGoogle Scholar
  70. 70.
    Timpl R, Risteli J, Bachinger HP: Identification of a new basement membrane collagen by the aid of a large fragment resistant to bacterial collagenase. FEBS Lett. 1979;101:265–268.PubMedCrossRefGoogle Scholar
  71. 71.
    Yurchenko PD, Furthmayr H. Self-assembly of basement membrane collagen. Biochemistry. 1984;23:1839–1850.CrossRefGoogle Scholar
  72. 72.
    Hassel JR, Gehron Robey P, Barrach HJ, Wilczer J, Rennard SI, Martin GR. Isolation of a heparan sulfate containing proteoglycan from basement membrane. Proc Natl Acad Sci USA. 1980; 77:4494–4498.CrossRefGoogle Scholar
  73. 73.
    Hassel JR, Leyshon WC, Ledbetter SR, et al. Isolation of two forms of basement membrane proteoglycans. J Biol Chem. 1985;260:8098–8105.Google Scholar
  74. 74.
    Farquhar MG, Courtoy PJ, Lemkin MC, Kanwar YS: In: Kuhn K, Shoene HH, Timpl R, eds. New Trends in Basement Membrane Research. New York: Raven Press; 1982:9–29.Google Scholar
  75. 75.
    Sakai LY, Keene DR, Morris NP, Burgeson RE. Type VII collagen is a major structural component of anchoring fibrils. J Cell Biol. 1986; 103:1577–1586.PubMedCrossRefGoogle Scholar
  76. 76.
    Lunstrum GP, Sakai LY, Keene DR, Morris NP, Burgeson RE. Large complex globular domains of type VII procollagen contribute to the structure of anchoring fibrils. J Biol Chem. 1986; 261:9042–9048.PubMedGoogle Scholar
  77. 77.
    Woodley DT, Briggaman RA, O’Keefe EJ, Inman AO, Queen LL, Gammon WR. Identification of the skin basement membrane antoantigen in epidermolysis bullosa acquisita. N Eng J Med. 1984; 310:1007–1013.CrossRefGoogle Scholar
  78. 78.
    Woodley DT, Burgeson RE, Lundstrum G, Bruckner-Tuderman L, Reese MJ, Briggaman RA. The epidermolysis bullosa acquisita antigen is the globular carboxyl terminus of type VII procollagen. J Clin Invest. 1988; 81:683–687.PubMedCrossRefGoogle Scholar
  79. 79.
    Yoshiike T, Woodley DT, Briggaman RA. Epidermolysis bullosa acquisita antigen; relationship between the collagenase-sensitive and-insensitive domains. J Invest Dermatol. 1988;90:127–133.PubMedCrossRefGoogle Scholar
  80. 80.
    Woodley DT, O’Keefe EJ, Reese MJ, Mechanic GL, Briggaman RA, Gammon WR. Epidermolysis bullosa acquisita antigen, a new major component of cutaneous basement membrane, is a glycoprotein with collagenous domains. J Invest Dermatol. 1986;86:668–672.PubMedCrossRefGoogle Scholar
  81. 81.
    Woodley DT, Briggaman RA, Gammon WR, O’Keefe EJ. Epidermolysis bullosa acquisita antigen is synthesized by human keratinocytes cultured in serum-free medium. Biochem Biophys Res Commum. 1985; 130:1267–1272.CrossRefGoogle Scholar
  82. 82.
    Woodley DT, Briggaman RA, Falk RJ, et al. Epidermolysis bullosa acquisita antigen, a major cutaneous basement membrane component, is synthesized by human dermal fibroblasts and other cutaneous tissues. J Invest Dermatol. 1986; 87:227–231.PubMedCrossRefGoogle Scholar
  83. 83.
    Stanley JR, Rubinstein N, Klaus-Kortun V. Epidermolysis bullosa acquisita antigen is synthesized by both human keratinocytes and human dermal fibroblasts. J Invest Dermatol. 1985; 85:542–545.PubMedCrossRefGoogle Scholar
  84. 84.
    Bruckner-Tuderman L, Ruegger S, Odermatt B, Mitsuhashi Y, Schnyder UW. Lack of type VII collagen in unaffected skin of patients with severe recessive dystrophic epidermolysis bullosa. Dermatologica. 1988; 176:57–64.PubMedCrossRefGoogle Scholar
  85. 85.
    Rusenko KW, Gammon WR, Fine JD, Briggaman RA. The carboxyl-terminal domain of type VII collagen is present at the basement membrane in recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 1989; 92:623–627.PubMedCrossRefGoogle Scholar
  86. 86.
    Briggaman RA, Wheeler CE. Epidermolysis bullosa dystrophica-recessive: a possible role of ancoring fibrils in the pathogenesis. J Invest Dermatol. 1975; 65:203–211.PubMedCrossRefGoogle Scholar
  87. 87.
    Woodley DT, O’Keefe EJ, McDonald JA, Reese MJ, Briggaman RA, Gammon WR. Specific affinity between fibronectin and the epidermolysis bullosa acquisita (EBA) antigen. J Clin Invest. 1987; 79:1826–1830.PubMedCrossRefGoogle Scholar
  88. 88.
    Hashimoto I, Schnyder UW, Anton-Lamprecht I, et al. Ultrastructural studies in epidermolysis bullosa hereditaria: III. Recessive dystrophic types with dermolytic blistering (Hallopeau-Siemens types and inverse types). Arch Dermatol Res. 1976;256:137–150.PubMedCrossRefGoogle Scholar
  89. 89.
    Tidman MJ, Eady RA. Evaluation of anchoring fibrils and other components of the dermal-epidermal junction in dystrophic epidermolysis bullosa by a quantitative ultrastructural technique. J Invest Dermatol. 1985; 84:374–376.PubMedCrossRefGoogle Scholar
  90. 90.
    Briggaman RA. Is there any specificity to defects of anchoring fibrils in epidermolysis bullosa dystrophica, and what does this mean in terms of pathogenesis? J Invest Dermatol. 1985;84:371–373.PubMedCrossRefGoogle Scholar
  91. 91.
    Woodley DT, Briggaman RA, Herzog SR, Meyers AA, Peterson HD, O’Keefe EJ. Characterization of neo-dermis formation beneath cultured human epidermal autografts transplanted on muscle fascia. J Invest Dermatol. 1990;95:20–26.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • David T. Woodley
  • Scott McNutt

There are no affiliations available

Personalised recommendations