Skip to main content

Thrips-Tomato Spotted Wilt Virus Interactions: Morphological, Behavioral and Cellular Components Influencing Thrips Transmission

  • Chapter

Part of the book series: Advances in Disease Vector Research ((VECTOR,volume 9))

Abstract

Epidemics of insect-transmitted plant viruses in agricultural ecosystems require the interaction of 3 basic components: the host plant of the virus, the insect vector and the plant pathogenic virus. While this triad sounds quite straight forward, the relationships and interactions occurring between and among the basic triad components and the environment are complex and dynamic, frequently defying complete understanding by scientists and agricultural practitioners worldwide. The economically devastating tomato spotted wilt virus (TSWV) epidemics that occurred globally in recent years have inspired a multidisciplinary, interactive research approach aimed at unraveling the relationship between TSWV, its thrips vectors and the epidemiology of this important plant disease (23, 24, 75, 92). Our goal in this chapter is to integrate information regarding thrips morphology, feeding behavior, biology on different plant hosts and cellular thrips/TSWV interactions into a pivotal foundation for understanding TSWV epidemiology and control. As an introduction, we present the essential elements of TSWV epidemics: the thrips, the virus and the interactions of these two entities with plant hosts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, W.R., and Broadbent, A.B., 1986, Transmission of tomato spotted wilt virus in Ontario greenhouses by the western flower thrips, Frankliniella occidental (Pergande), Can. J. Plant Pathol. 8:33–38.

    Article  Google Scholar 

  2. Allen, W.R., and Matteoni, J.A., 1988, Cyclamen ringspot: Epidemics in Ontario greenhouses caused by the tomato spotted wilt virus, Can. J. Plant Pathol. 10:41–46.

    Article  Google Scholar 

  3. Allen, W.R., Matteoni, J.A., and Broadbent, A.B., 1991, Factors relating to epidemiology and symptomatology in florist’s chrysanthemum infected with the tomato spotted wilt virus, in Hsu, H., and Lawson, R.H. (eds): Virus-Thrips-Plant Interaction of Tomato Spotted Wilt Virus, Proceedings of a USD A Workshop, United States Department of Agriculture, Agricultural Research Service, ARS-87, pp. 28–45.

    Google Scholar 

  4. Amin, P.W., Reddy, D.V.R., and Ghanekar, A.M., 1981, Transmission of tomato spotted Wilt virus, causal agent of bud necrosis of peanut, by Scirtothrips dor salis and Frankliniella schultzei, Plant Dis. 65:663–665.

    Article  Google Scholar 

  5. Backus, E.A., and McLean, D.L., 1985, Behavioral evidence that the precibarial sensilla of leafhoppers are chemosensory and function in host discrimination, Entomol. Exp. Appl. 37:219–228.

    Article  Google Scholar 

  6. Backus, E.A., 1985, The anatomical and sensory mechanisms of feeding behavior, in Nault, L.S., and Rodriguez, J.G. (eds): The Leafhoppers and Planthoppers, John Wiley and Sons, pp. 163–19.

    Google Scholar 

  7. Bald, J.G., and Samuel, G., 1931, Investigation on “spotted wilt” of tomatoes. II. Australia, Commonwealth Council Sci. Ind. Research Bull. No. 54.

    Google Scholar 

  8. Bedford, H.W., 1921, The cotton thrips (Heliothrips indicus Bagn.) in the Sudan, Bull. Wellcome Trop. Res. Labs. Entomol. Section 18.

    Google Scholar 

  9. Best, R.J., 1968, Tomato spotted wilt virus, in Smith, K.M., and Lauffer, M.A. (eds): Advances in Virus Research, Volume 13, Academic Press, New York, pp. 65–145.

    Chapter  Google Scholar 

  10. Borrer, D.J., Triplehorn, CA., and Johnson, N.F., 1989, An Introduction to the Study of Insects, Saunders College Publishing, Philadelphia, 875 pp.

    Google Scholar 

  11. Bournier, A., and Bournier, J.P., 1987, Ľintroduction en France ďun nouveau ravageur: Frankliniella occidentalis, Phytoma 388:14–17.

    Google Scholar 

  12. Bournier, A., 1961, Sur ľexistence et ľevolution ďun mycetome au cours de ľembryologenese de Caudothrips buffai Karny, Verh. XI Intern. Kongr. Entomol. 1960,1:352.

    Google Scholar 

  13. Briddon, R.W., Pinner, M.S., Stanley, J., and Markham, P.G., 1990, Geminivirus coat protein gene replacement alters insect specificity, Virology 177:85–94.

    Article  PubMed  CAS  Google Scholar 

  14. Broadbent, A.B., Allen, W.R., and Footitt, R.G., 1987, The association of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) with greenhouse crops and the tomato spotted wilt virus in Ontario, Can. Ent. 119:501–503.

    Article  Google Scholar 

  15. Broadbent, A.B., Matteoni, J.A., and Allen, W.R., 1990, Feeding preferences of the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and incidence of tomato spotted wilt virus among cultivars of florist’s chrysanthemum, Can. Ent. 122:1111–1117.

    Article  Google Scholar 

  16. Bryan, D.E., and Smith, R.F., 1956, The Frankliniella occidentalis (Pergande) complex in California (Thysanoptera:Thripidae), University of California Publ. Ent., 10:359–410).

    Google Scholar 

  17. Chisholm, I.F., and Lewis, T., 1984, A new look at thrips (Thysanoptera) mouth-parts, their action and effects of feeding on plant tissue, Bull. Entomol. Res. 74:663–675.

    Article  Google Scholar 

  18. Cho, J.J., Mitchell, W.C., Yudin, L., and Takayama, L., 1984, Ecology and epidemiology of tomato spotted wilt virus (TSWV) and its vector, Frankliniella occidentalis, Phytopathology 74:866, (Abstr.).

    Google Scholar 

  19. Cho, J.J., Mau, R.F.L., Gonsalves, D., and Mitchell, W.C., 1986, Reservoir weed hosts of tomato spotted wilt virus, Plant Dis. 70:1014–1017.

    Article  Google Scholar 

  20. Cho, J.J., Mitchell, W.C., Mau, R.F.L., and Sakimura, K., 1987, Epidemiology of tomato spotted wilt virus on crisphead lettuce in Hawaii, Plant Dis. 71:505–508.

    Article  Google Scholar 

  21. Cho, J.J, Mau, R.F.L., Mitchell, W.C., Gonsalves, D, and Yudin, L., 1987, Host list of tomato spotted wilt virus (TSWV) susceptible plants, University of Hawaii, College of Tropical Agriculture and Human Resources, Research-Extension Series 078,12 pp.

    Google Scholar 

  22. Cho, J.J., Mau, R.F.L., Hamasaki, R.T., and Gonsalves, D., 1988, Detection of tomato spotted wilt virus in individual thrips by enzyme linked immunosorbent assay, Phytopathology 78:1348–1352.

    Article  Google Scholar 

  23. Cho, J.J, Mau, R.F.L., German, T.L., Hartmann, R.W., Yudin, L.S., Gonsalves, D., and Provvidenti, R., 1989, A multidisciplinary approach for tomato spotted wilt virus (TSWV) management in Hawaii, Plant Dis. 73:375–383.

    Article  Google Scholar 

  24. Cho, J.J., Mau, R.F.L., Ullman, D.E., and Custer, D.M., 1991, Serological detection of tomato spotted wilt virus within thrips, in Hsu, H., and Lawson, R.H. (eds): Virus-Thrips-Plant Interaction of Tomato Spotted Wilt Virus, Proceedings of a USDA Workshop, United States Department of Agriculture, Agricultural Research Service, ARS-87, pp. 144–152.

    Google Scholar 

  25. Day, M.F., and Irzykiewicz, H., 1954, Physiological studies on thrips in relation to transmission of tomato spotted wilt virus, Australian J. Biol. Sci. 7:274–281.

    CAS  Google Scholar 

  26. de Avila, A.C., Huguenot, C., Resende, R. de O., Kitajima, E.W., Goldbach, R.W., and Peters, D., 1990, Serological differentiation of 20 isolates of tomato spotted wilt virus, J. gen. Virol 71:2801–2807.

    Article  PubMed  Google Scholar 

  27. de Haan, P., Wagemakers, L., Goldbach, R., and Peters, D., 1989a, Tomato spotted wilt virus, a new member of the Bunyaviridae? in Kolakofsky, D., and Mahy, B.W.J. (eds): Genetics and Pathogenicity of Negative Strand Viruses, Elsevier, Amsterdam, pp. 287–290.

    Google Scholar 

  28. de Haan, P., Wagemakers, L., Peters, D., and Goldbach, R., 1989b, Molecular cloning and terminal sequence determination of the S and M RNAs of tomato spotted wilt virus, J. gen. Virology 70:3469–3473.

    Article  Google Scholar 

  29. de Haan, P., Wagemakers, L., Peters, D., and Goldbach, R., 1990, The S RNA segment of tomato spotted wilt virus has an ambisense character, J. gen. Virol. 71:1001–1007.

    Article  PubMed  Google Scholar 

  30. Del Bene, G., Dallai, R., and Marchini, D., 1991, Ultrastructure of the midgut and the adhering tubular salivary glands of Frankliniella occidentalis (Pergande) (Thysanoptera:Thripidae), Intl. J. Insect Morphol. Embryol. 20:15–24.

    Article  Google Scholar 

  31. Elliott, R.M., 1990a, Molecular biology of the bunyaviridae, J. Gen. Virology 71:501–522.

    Article  CAS  Google Scholar 

  32. Elliott, R.M., 1990b, Bunyaviridae, in Abstr. Intl. Congress of Virology, Berlin, p. 499.

    Google Scholar 

  33. Elzinga, R.J., 1987, Fundamentals of Entomology, 3rd Edition, Prentice-Hall, New Jersey, 456 pp.

    Google Scholar 

  34. Evans, H.E., 1984, Insect Biology: A Textbook of Entomology, Addison-Wesley, Massachusetts, 436 pp.

    Google Scholar 

  35. Francki, R.I.B., and Grivell, C.J., 1970, An electron microscope study of the distribution of tomato spotted wilt virus in systemically infected Datura stamonium leaves, Virology 42:969–978.

    Article  PubMed  CAS  Google Scholar 

  36. Francki, R.I.B., and Hatta, T., 1981, Tomato spotted wilt virus, in Kurstak, E. (ed): Handbook of Plant Virus Infection and Comparative Diagnosis, Elsevier Biomedical Press, North Holland, pp. 491–512.

    Google Scholar 

  37. German, T.L., Hu, Y., Cho, J.J., and Ullman, D.E., 1991, Detection of tomato spotted wilt virus RNA in plant and thrips using strand-specific probes, in Hsu, H., and Lawson, R.H. (eds): Virus-Thrips-Plant Interaction of Tomato Spotted Wilt Virus, Proceedings of a USD A Workshop, United States Department of Agriculture, Agricultural Research Service, ARS-87, pp. 137–143.

    Google Scholar 

  38. Goldstein, J.L., Brown, M.S., Anderson, R.G.W., Russell, D.W., and Schneider, W.J., 1985, Receptor-mediated endocytosis: Concepts emerging from the LDL receptor system, Ann. Rev. Cell Biol. 1:1–39.

    Article  PubMed  CAS  Google Scholar 

  39. Gonzalez-Scarano, F., 1985, La crosse virus Gl glycoprotein undergoes a conformational change at the pH of fusion, Virology 140:209–216.

    Article  PubMed  CAS  Google Scholar 

  40. Gonzalez-Scarano, F., Pobjecky, N., and Nathanson, N., 1984, La crosse bunya-virus can mediate pH-dependent fusion from without, Virology 132:222–225.

    Article  PubMed  CAS  Google Scholar 

  41. Gonsalves, D. and Trujillo, E.E., 1986, Tomato spotted wilt virus in papaya and detection of the virus with ELISA, Plant Dis. 70:501–506.

    Article  Google Scholar 

  42. Greber, R.S., Klose, M.J., Teakle, D.S., and Milne, J.R., 1991, High incidence of tobacco streak virus in tobacco and its transmission by Microcephalothrips abdominalis and pollen fromAgeratum houstonianum, Plant Dis. 75:450–452.

    Article  Google Scholar 

  43. Greber, R.S., Klose, M.J., Milne, J.R., and Teakle, D.S., 1991, Transmission of prunus necrotic ringspot virus using plum pollen and thrips, Anals. Appl. Biol. 118:589–591.

    Article  Google Scholar 

  44. Heming, B.S., 1978, Structure and function of mouthparts in larvae of Haplo-thrips verbasci (Osborn) (Thysanoptera, Tubilifera, Phlaeothripidae), J. Morphol. 156:1–37.

    Article  Google Scholar 

  45. Heming, B.S., 1985, Thrips (Thysanoptera) in Alberta, Agric. For. Bull. 8:19–24.

    Google Scholar 

  46. Horton, J.R., 1918, The citrus thrips, Bull. U.S. Dept. Agric. p. 616.

    Google Scholar 

  47. Hsu, H.T., and Lawson, R.H., 1991, Detection of tomato spotted wilt virus by enzyme-linked immunosorbent assay, dot-blot immunoassay and direct tissue blotting, in Hsu, H., and Lawson, R.H. (eds): Virus-Thrips-Plant Interaction of Tomato Spotted Wilt Virus, Proceedings of a USD A Workshop, United States Department of Agriculture, Agricultural Research Service, ARS-87, pp. 120–126.

    Google Scholar 

  48. Huckaba, R.M., and Coble, H.D., 1991, Effect of soybean thrips (Thysanoptera: Thripidae) feeding injury on penetration of acifluorfen in soybean, J. Econ. Entomol. 84:300–305.

    Google Scholar 

  49. Hunter, W.B., and Ullman, D.E., 1989, Analysis of mouthpart movements during feeding of Frankliniella occidentalis (Pergande) and F. schultzei Trybom (Thysanoptera:Thripidae), Intl. J. Insect Morphol. & Embryol. 18:161–171.

    Article  Google Scholar 

  50. Hunter, W.B., Ullman, D.E., Moore, A., Electronic monitoring: Characterizing the feeding behavior of western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), in Ellsbury, M., Backus, E.A., and Ullman, D.E. (eds): Proceedings of an Informal Conference on Electronic Monitoring of Insect Feeding Behavior, Misc. Publ. ESA. (In press)

    Google Scholar 

  51. Ie, T.S., 1970, Tomato spotted wilt virus, CMI/AAB Plant virus descriptions No. 39.

    Google Scholar 

  52. Ie, T.S., 1971, Electron microscopy of developmental stages of tomato spotted wilt virus in plant cells, Virology 43:468–479.

    Article  PubMed  CAS  Google Scholar 

  53. Ie, T.S., 1982, A sap transmissible, defective form of tomato spotted wilt virus, J. gen. Virol. 59:387–391.

    Article  Google Scholar 

  54. Imms, A.D., 1957, A general textbook of entomology, 9th edition, London, 886 pp.

    Google Scholar 

  55. Irwin, M.E., and Ruesink, W.G., 1987, Vector intensity: A product of propensity and activity, in McLean, G.D., Garrett, R.G., and Ruesink, W.G. (eds): Plant Virus Epidemics: Monitoring, Modelling and Predicting Outbreaks, pp. 13–34.

    Google Scholar 

  56. Iwaki, M., Honda, Y., Hanada, K., Tochihara, H., Yanaha, T., Hokama, K., and Yokoyama, T., 1984, Silver mottle disease of watermelon caused by tomato spotted wilt virus, Plant Dis. 68:1006–1008.

    Google Scholar 

  57. Johnson, M.W., 1986, Population trends of a newly introduced species, Thrips palmi (Thysanoptera: Thripidae) on commercial watermelon plantings in Hawaii, J. Econ. Entomol. 79:718–720.

    Google Scholar 

  58. Johnson, M.W., 1989, Foliar pests of watermelon in Hawaii, Tropical Pest Management 35:90–96.

    Article  Google Scholar 

  59. Jones, T., 1954, The external morphology of Chirothrips hamatus (Trybom) (Thysanoptera), Trans. R. Entomol. Soc. London, 105:163–187.

    Article  Google Scholar 

  60. Kimsey, R.B., and McLean, D.L., 1988, Versatile electronic measurement system for studying probing and feeding behavior of piercing and sucking insects, Ann. Entomol. Soc. Am. 80:118–129.

    Google Scholar 

  61. Kitajima, E.W., 1965, Electron microscopy of viracabeca (Brazilian tomato spotted wilt virus) with the host cell, Virology 26:89–99.

    Article  PubMed  CAS  Google Scholar 

  62. Kormelink, R., Kitajima, E.W., De Haan, P., Zuidema, D., Peters, D., and Goldbach, R., 1991, The nonstructural protein (NSs) encoded by the ambisense S RNA segment of tomato spotted wilt virus is associated with fibrous structures in infected plant cells, Virology 181:459–468.

    Article  PubMed  CAS  Google Scholar 

  63. Kunkel, H., 1987, Membrane feeding systems in aphid research, in Harris, K.F., and Maramorosch, K. (eds.), Aphids As Virus Vectors, Academic Press, New York, pp. 311–333.

    Google Scholar 

  64. Law, M.D., and Moyer, J.W., 1990, A tomato spotted wilt-like virus with a serologically distinct N protein, J. gen. Virology 71:933–938.

    Article  CAS  Google Scholar 

  65. Lewis, T., 1973, Thrips. Their biology, ecology, and economic importance, Academic Press, New York, 349 pp.

    Google Scholar 

  66. Lin, N.S., Hsu, Y.H. and Hsu, H.T., 1990, Immunological detection of plant viruses and a mycoplasma-like organism by direct tissue blotting on nitrocellulose membranes, Phytopathology 80:824–828.

    Article  CAS  Google Scholar 

  67. Linford, M.B., 1932, Transmission of the pineapple yellow-spot virus by Thrips tabaci, Phytopathology 22:301–324.

    Google Scholar 

  68. Locke, M., 1984, The structure and development of the vacuolar system in the fat body of insects, in King, R.C., and Akai, H. (eds): Insect Ultrastructure, Volume 2 pp. 151–194.

    Google Scholar 

  69. Ludwig, G.V., Christensen, B.M., Yuill, T.M., and Schultz, K.T., 1989, Enzyme processing of la crosse virus glycoprotein Gl: A bunyavirus-vector infection model, Virology 171:108–113.

    Article  PubMed  CAS  Google Scholar 

  70. Maiss, E., Ivanova, L., Breyel, E., and Adam, G., 1991, Cloning and sequencing of the S RNA from a Bulgarian isolate of tomato spotted wilt virus, J. gen. Virology 72:461–464.

    Article  CAS  Google Scholar 

  71. Markham, P.G., Pinner, M.S., and Boulton, M., 1984, The transmission of maize streak virus by leafhoppers, a new look at host adaptation, Bull. Soc. Entomol. Suisse 57:431–432.

    Google Scholar 

  72. Marsh, M., and Helenius, A., 1980, Adsorptive endocytosis of semliki forest virus, J. Mol Biol. 142:439–454.

    Article  PubMed  CAS  Google Scholar 

  73. Martoja, R., and Ballan-DuFrancais, C., 1984, The ultrastructure of the digestive and excretory organs, in King, R.C., and Akai, H. (eds): Insect Ultrastructure, Volume 2, Plenum Press, New York, London, pp. 199–268.

    Google Scholar 

  74. Matlin, K.S., Reggio, H., Helenius, A., and Simons, K., 1982, Pathway of vesicular stomatitis virus entry leading to infection, J. Mol Biol. 156:609–631.

    Article  PubMed  CAS  Google Scholar 

  75. Mau, R.F.L., Bautista, R., Cho, J.J., Ullman, D.E., Gusukuma-Minuto, L.R., and Custer, D., 1991, Factors affecting the epidemiology of TSWV in field crops: Comparative virus acquisition efficiency of vectors and suitability of alternate hosts to Frankliniella occidentalis (Pergande), in Hsu, H., and Lawson, R.H. (eds): Virus-Thrips-Plant Interaction of Tomato Spotted Wilt Virus, Proceedings of a USD A Workshop, United States Department of Agriculture, Agricultural Research Service, ARS-87, pp. 21–27.

    Google Scholar 

  76. McLean, D.L., and Kinsey, M.G., 1984, The precibarial valve and its role in the feeding behavior of the pea aphid, Acyrthosiphon pisum, Bull Entomol Soc. Amer. 30:26–31.

    Google Scholar 

  77. Metcalf, C.L., Flint, W.P, and Metcalf, R.L., 1962, Destructive and Useful Insects, McGraw-Hill, New York, pp. 142, 211–213.

    Google Scholar 

  78. Mickoleit, E., 1963, Untersuchungen zur Kopfmorphologie der Thysaopteran, Zool Jahrb. Ant. 81:101–150.

    Google Scholar 

  79. Milne, R.G., and Francki, R.I.B., 1984, Should tomato spotted wilt virus be considered as a possible member of the family Bunyaviridae?, Intervirology 22:72–76.

    Article  PubMed  CAS  Google Scholar 

  80. Mitchell, F.L., and Smith, J.W. Jr., 1991, Epidemiology of tomato spotted wilt virus relative to thrips populations, in Hsu, H., and Lawson, R.H. (eds): Virus-Thrips-Plant Interaction of Tomato Spotted Wilt Virus, Proceedings of a USD A Workshop, United States Department of Agriculture, Agricultural Research Service, ARS-87, pp. 46–52.

    Google Scholar 

  81. Moore, E.S., 1933, The Kromnek or Kat River disease of tobacco and tomato in the East Province (South Africa), Bull. Dept. Agr. S. Africa Sci. No. 123.

    Google Scholar 

  82. Mound, L.A., 1971, The feeding apparatus of thrips, Bull. Entomol. Res. 60:547–548.

    Article  Google Scholar 

  83. Moritz, G., 1989, Die ontogenese der Thysanoptera (Insecta) unter besonderer berucksichtigung des fransenfluglers Hercinothrips femoralis (Reuter, O.M., 1891) (Thysanoptera, Thripidae, Panchaetothripinae) III. Mitteilung: Praepupa und pupa, (The ontogenesis of Thysanoptera (Insecta) with special reference to the Panchaetothripinae Hercinothrips femoralis (Reuter, O.M., 1891) (Thysanoptera, Thripidae, Panchaetothripinae) III. Prepupa and pupa), Zool Jb. Anat. 118:15–53.

    Google Scholar 

  84. Moritz, G., 1989, Die ontogenese der Thysanoptera (Insecta) unter besonderer berucksichtigung des fransenfluglers Hercinothrips femoralis (Reuter, O.M., 1891) (Thysanoptera, Thripidae, Panchaetothripinae) IV. Mitteilung: Imago-Kopf (The ontogenesis of Thysanoptera (Insecta) with special reference to the Panchaetothripinae Hercinothrips femoralis (Reuter, O.M., 1891) (Thysanoptera, Thripidae, Panchaetothripinae) IV. Imago—Head), Zool. Jb. Anat. 118:273–307.

    Google Scholar 

  85. Moritz, G., 1989, Die ontogenese der Thysanoptera (Insecta) unter besonderer berucksichtigung des fransenfluglers Hercinothrips femoralis (Reuter, O.M., 1891) (Thysanoptera, Thripidae, Panchaetothripinae) V. Mitteilung: Imago Thorax, (The ontogenesis of Thysanoptera (Insecta) with special reference to the Panchaetothripinae Hercinothrips femoralis (Reuter, O.M., 1891) (Thysanoptera, Thripidae, Panchaetothripinae) V. Imago—Thorax), Zool. Jb. Anat. 118:393–429.

    Google Scholar 

  86. Moritz, G., 1989, Die ontogenese der Thysanoptera (Insecta) unter besonderer berucksichtigung des fransenfluglers Hercinothrips femoralis (Reuter, O.M., 1891) (Thysanoptera, Thripidae, Panchaetothripinae) VI. Mitteilung:Imago—Abdomen, (The ontogenesis of Thysanoptera (Insecta) with special reference to the Panchaetothripinae Hercinothrips femoralis (Reuter, O.M., 1891) (Thysanoptera, Thripidae, Panchaetothripinae) VI. Imago—Abdomen), Zool. Jb. Anat. 119:157–218.

    Google Scholar 

  87. Moyer, J.W., Law, M.D., and Urban, L.A., 1991, Characteristics of a serologically distinct TSWV-like virus from impatiens, in Hsu, H., and Lawson, R.H. (eds): Virus-Thrips-Plant Interaction of Tomato Spotted Wilt Virus, Proceedings of a USD A Workshop, United States Department of Agriculture, Agricultural Research Service, ARS-87, pp. 53–59.

    Google Scholar 

  88. Oetting, R.D., 1991, The effect of host species and different plant components on thrips feeding and development, in Hsu, H., and Lawson, R.H. (eds): Virus-Thrips-Plant Interaction of Tomato Spotted Wilt Virus, Proceedings of a USD A Workshop, United states Department of Agriculture, Agricultural Research Service, ARS-87, pp. 15–19.

    Google Scholar 

  89. Paliwal, Y.C., 1974, Some properties and thrips transmission of tomato spotted wilt virus in Canada, Can. J. Botany 52:1170–1182.

    Google Scholar 

  90. Paliwal, Y.C., 1976, Some characteristics of the thrips Frankliniella vector relationship of tomato spotted wilt virus in Canada, Can. J. Bot. 54:402–405.

    Article  Google Scholar 

  91. Pedigo, L.P., 1989, Entomology and Pest Management, MacMillan Publishing Company, New York, 646 pp.

    Google Scholar 

  92. Peters, D., de Avila, A.C., Kitajima, E.W., Resende, R. de O., de Haan, P., and Goldbach, R.W., 1991, An overview of tomato spotted wilt virus, in Hsu, H., and Lawson, R.H. (eds): Virus-Thrips-Plant Interaction of Tomato Spotted Wilt Virus, Proceedings of a USD A Workshop, United States Department of Agriculture, Agricultural Research Service, ARS-87, pp. 1–14.

    Google Scholar 

  93. Pesson, P., 1951, Super-ordre des Thysanopteroides, Ordre des Thysanoptera, in Grasse, P. (ed): Traite de Zoologie, Anatomie, Systematique, Biologie, Insectes Superieurs et Hemiptereoides, Masson Cie, Paris, France, pp. 1805–1869.

    Google Scholar 

  94. Pittman, H.A., 1927, Spotted wilt of tomatoes. Preliminary note concerning the transmission of the’spotted wilt’ of tomatoes by an insect vector (Thrips tabaci Lind.), J. Council Sci. Ind. Research (Australia) 1:74–77.

    Google Scholar 

  95. Razvyazkina, G.M., 1953, The importance of the tobacco thrips in the development of outbreaks of tip chlorosis of Makhorka (in Russian), Doklady Vsesoyuz. Akad. Seľskokhoz, Nauk im. V.I. Lenina 18:27–31, (Abstr. in Rev. Appl. Entomol. A42:146).

    Google Scholar 

  96. Reddy, D.V.R., and Wightman, J.A., 1988, Tomato spotted wilt virus: Thrips transmission and control, in Harris, K.F. (ed): Advances in Disease Vector Research, Volume 8 Springer-Verlag, New York, pp. 203–220.

    Google Scholar 

  97. Reddy, D.V.R., Sudarshana, A.S., Ratna, A.S., Reddy, A.S., Amin, P.W., Kumar, I.K., and Murthy, A.K., 1991, The occurrence of yellow spot virus, a member of tomato spotted wilt virus group, on peanut (Arachia hypogaea L.) in India, in Hsu, H., and Lawson, R.H. (eds): Virus-Thrips-Plant Interaction of Tomato Spotted Wilt Virus, Proceedings of a USD A Workshop, United States Department of Agriculture, Agricultural Research Service, ARS-87, pp. 77–88.

    Google Scholar 

  98. Resende, R. de O., Kitajima, E.W., de Avila, A.C., Goldbach, R.W., and Peters, D., 1991, Defective isolates of tomato spotted wilt virus, in Hsu, H., and Lawson, R.H. (eds): Virus-Thrips-Plant Interaction of Tomato Spotted Wilt Virus, Proceedings of a USD A Workshop, United States Department of Agriculture, Agricultural Research Service, ARS-87, pp. 71–76.

    Google Scholar 

  99. Rice, DJ., German, T.L., Mau, R.F.L., and Fujimoto, F.M., 1990, Dot blot detection of tomato spotted wilt virus RNA in plant and thrips tissues by cDNA clones, Plant Dis. 74:274–276.

    Article  Google Scholar 

  100. Rosenheim, J.A., Welter, S.C., Johnson, M.W., Mau, R.F.L., and Gusukuma-Minuto, L.R. 1990, Direct feeding damage on cucumber by mixed-species infestations of Thrips palmi and Frankliniella occidentalis (Thysanoptera: Thripidae), J. Econ. Entomol. 83:1519–1525.

    Google Scholar 

  101. Rothschild, M., Schiein, Y., and Ito, 5., 1986, A colour atlas of insect tissues via the flea, Wolfe Publishing Ltd., London, 184 pp.

    Google Scholar 

  102. Sakimura, K., 1940, Evidence for the identity of the yellow-spot virus with the spotted-wilt virus: Experiments with the vector, Thrips tabaci, Phytopathology 30:281–299.

    Google Scholar 

  103. Sakimura, K., 1962a, Frankliniella occidentalis (Thysanoptera: Thripidae), a vector of the tomato spotted wilt virus, with special reference to color forms, Ann. Entomol. Soc. Am. 55:387–389.

    Google Scholar 

  104. Sakimura, K., 1962b, The present status of thrips-borne viruses, in Maramorosch, K. (ed): Biological Transmission of Disease Agents, Academic Press, New York, pp. 33–40.

    Google Scholar 

  105. Sakimura, K., 1963, Frankliniella fusca, an additional vector for the tomato spotted wilt virus, with notes on Thrips tabaci, another vector, Phytopathology 53:412–415.

    Google Scholar 

  106. Sakimura, K., 1969, A comment on the color forms of Frankliniella schultzei (Thysanoptera: Thripidae) in relation to transmission of the tomato spotted wilt virus, Pacific Insects 11:761–762.

    Google Scholar 

  107. Samuel, G., Bald, J.G., and Pittman, H.A., 1930, Investigations on “spotted wilt” of tomatoes, Commonwealth Council Sci. Ind. Research Bull. Australia, 44.

    Google Scholar 

  108. Sdoodee, R., and Teakle, D.S., 1987, Transmission of tobacco streak virus by Thrips tabaci: a new method of plant virus transmission, PL Path. 36:377–380.

    Article  Google Scholar 

  109. Sharga, U.S., 1933, On the internal anatomy of some Thysanoptera, Trans. R. Entomol. Soc. London 81:185–204.

    Article  Google Scholar 

  110. Simons, K., and Fuller, S.D., 1985. Cell surface polarity in epithelia, Ann. Rev. Cell Biol. 1:243–88.

    Article  PubMed  CAS  Google Scholar 

  111. Skehel, J.J., Bayley, P.M., Brown, E.B., Martin, S.R., Waterfield, M.D., White, J.M., Wilson, I.A., and Wiley, D.C., 1982, Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion, Proc. Natl. Acad. sci. USA, 79:968–972.

    Article  PubMed  CAS  Google Scholar 

  112. Sherwood, J.L., Sanborn, M.R., Keyser, G.C., and Myers, L.D., 1989, Use of monoclonal antibodies in detection of tomato spotted wilt virus, Phytopathology 79:61–64.

    Article  Google Scholar 

  113. Smith, K.M., 1932, Studies on plant virus diseases. XI. Further experiments with ringspot virus: Its identification with tomato spotted wilt of tomato, Ann. Appl. Biol. 19:305–330.

    Article  Google Scholar 

  114. Steiner, M.Y., 1990, Determining population characteristics and sampling procedures for the western flower thrips (Thysanoptera: Thripidae) and the Predatory Mite Amblyseius cucumeris (Acari: Phytoseiidae) on greenhouse cucumber, Environ. Entomol. 19:1605–1613.

    Google Scholar 

  115. Stoner, K.A., and Shelton, A.M., 1988a, Role of nonpreference in the resistance of cabbage varieties to the onion thrips (Thysanoptera: Thripidae), J. Econ. Entomol. 81:1062–1067.

    Google Scholar 

  116. Stoner, K.A., and Shelton, A.M., 1988b, Influence of variety on abundance and within-plant distribution of onion thrips (Thysanoptera: Thripidae) on cabbage, J. Econ. Entomol. 81:1190–1195.

    Google Scholar 

  117. Strassen, R. Zur. 1960, Catalogue of the known species of South African Thysanoptera, J. Entomol. Soc. S. Afr. 23:321–367.

    Google Scholar 

  118. Ullman, D.E., Westcot, D.M., Hunter, W.B., and Mau, R.F.L., 1989, Internal anatomy and morphology of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) with special reference to interactions between thrips and tomato spotted wilt virus, Int. J. Insect Morphol. & Embryol. 18:289–310.

    Article  Google Scholar 

  119. Ullman, D.E., Westcot, D.M., Mau, R.F.L., Cho, J.J., and Custer, D.M., 1991, Tomato spotted wilt virus and one thrips vector: Frankliniella occidentalis (Pergande) Internal Morphology and Virus Location, in Hsu, H., and Lawson, R.H. (eds): Virus-Thrips-Plant Interaction of Tomato Spotted Wilt Virus, Proceedings of a USD A Workshop, United States Department of Agriculture, Agricultural Research Service, ARS-87, pp. 127–136.

    Google Scholar 

  120. Ullman, D.E., Cho, J.J., Mau, R.F.L., Westcot, D.M., and Custer, D.M., A Midgut Barrier to Tomato Spotted Wilt Virus Acquisition by Adult Western Flower Thrips, Phytopathology. (In press)

    Google Scholar 

  121. Urban, L.A., Huang, P., and Moyer, J.W., 1991, Cytoplasmic inclusions in cells infected with isolates of L and I serogroups of tomato spotted wilt virus, Phytopathology 81:525–529.

    Article  Google Scholar 

  122. Verkleij, F.N., and Peters, D., 1983, Characterization of a defective form of tomato spotted wilt virus, J. gen. Virology 64:677–686.

    Article  CAS  Google Scholar 

  123. Vernon, R.S., and Gillespie, D.R., 1990, Spectral responsiveness of Frankliniella occidentalis (Thysanoptera: Thripidae) determined by trap catches in greenhouses, Environ. Entomol. 19:1229–1241.

    Google Scholar 

  124. Wang, M., and Gonsalves, D., 1990, ELISA detection of various tomato spotted wilt virus isolates using specific antisera to structural proteins of the virus, Plant Dis. 74:154–158.

    Article  Google Scholar 

  125. Welter, S.C., 1989, Arthropod impact on plant gas exchange, in Bernays, E.A. (ed): Insect-Plant Interactions, Volume 1, pp. 135–150.

    Google Scholar 

  126. Welter, S.C., Rosenheim, J.A., Johnson, M.W., Mau, R.F.L., and Gusukuma-Minuto, L.R., 1990, Effects of Thrips palmi and western flower thrips (Thysa noptera: Thripidae) on the yield, growth, and carbon allocation pattern in cucumbers, J. Econ. Entomol. 83:2092–2101.

    Google Scholar 

  127. Wiesenborn, W.D., and Morse, J.G., 1985, Feeding rate of Thysanoptera estimated using C14 inulin, J. Econ. Entomol. 78:151–158.

    Google Scholar 

  128. Wiesenborn, W.D., and Morse, J.G., 1988, The mandible and maxillary stylets of Scirtothrips citri (Moulton) (Thysanoptera: Thripidae), Pan-Pacific Entomologist 64:39–42.

    Google Scholar 

  129. Yudin, L.S., Cho, J.J., and Mitchell, W.C., 1986, Host range of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), with special reference to Leucaena glauca, Environ. Entomol. 15:1292–1295.

    Google Scholar 

  130. Yudin, L.S., Mitchell, W.C., and Cho, J.J., 1987, Color preference of thrips (Thysanoptera:Thripidae) with reference to aphids (Homoptera: Aphididae) and leafminers in Hawaiian lettuce farms, J. Econ. Entomol. 80:51–55.

    Google Scholar 

  131. Yudin, L.S., Tabashnik, B.E., Cho, J.J., and Mitchell, W.C., 1988, Colonization of weeds and lettuce by thrips (Thysanoptera: Thripidae), Environ. Entomol. 17:522–526.

    Google Scholar 

  132. Yudin, L.S., Tabashnik, B.E., Cho, J.J., and Mitchell, W.C., 1990, Disease-prediction and economic models for managing tomato spotted wilt virus disease in lettuce, Plant Dis. 74:211–216.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Ullman, D.E., Cho, J.J., Mau, R.F.L., Hunter, W.B., Westcot, D.M., Custer, D.M. (1992). Thrips-Tomato Spotted Wilt Virus Interactions: Morphological, Behavioral and Cellular Components Influencing Thrips Transmission. In: Harris, K.F. (eds) Advances in Disease Vector Research. Advances in Disease Vector Research, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2910-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2910-0_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7716-3

  • Online ISBN: 978-1-4612-2910-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics