Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 42))

Abstract

Let ℝ be the real numbers and if E \( \subseteq \) ℝ, let Ē,∂E, |E|, denote the closure, boundary, and outer Lebesgue measure of E, respectively.

Supported by NSF.

Supported by the Commonwealth of Kentucky through the Kentucky EPSCOR Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Brown, Area integral estimates for caloric functions, Trans. Amer. Math. Soc. 315 (1989), pp. 565–589.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), pp. 241–250.

    MathSciNet  MATH  Google Scholar 

  3. B. Dahlberg, C. Kenig, and D. Jenison, Area integral estimates for elliptic differential equations with nonsmooth coefficients, Ark Mat 22 (1984), pp. 97–108.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Fefferman, C. Kenig, and J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, to appear.

    Google Scholar 

  5. J. Journé, Calderón-Zymund operators, pseudo-differential operators, and the Cauchy integral of Calderón, Springer lecture notes in mathematics 994 (1983), Springer-Verlag.

    Google Scholar 

  6. R. Kaufman and J.M. Wu, Parabolic measure on domains of class Lip 1/2, Compositio Mathematics 65 (1988), pp. 201–207.

    MathSciNet  MATH  Google Scholar 

  7. J. Lewis and J. Silver, Parabolic measure and the Dirichlet problem for the heat equation in two dimensions, Indiana Univ. Math. J. 37 (1988), pp. 801–839.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Murray, Commutators with fractional differentiation and BMO Sobolev spaces, Indiana Univ. Math. J. 34 (1985), pp. 205–215.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Strichartz, Bounded mean oscillation and Sobolev spaces, Indiana Univ. Math. J. 29 (1980), pp. 539–558.

    Article  MathSciNet  MATH  Google Scholar 

  10. J.M. Wu, On parabolic measures and subparabolic functions, Trans. Amer. Math. Soc. 251 (1979), pp. 171–185.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Lewis, J.L., Murray, M. (1992). Absolute Continuity of Parabolic Measure. In: Dahlberg, B., Fefferman, R., Kenig, C., Fabes, E., Jerison, D., Pipher, J. (eds) Partial Differential Equations with Minimal Smoothness and Applications. The IMA Volumes in Mathematics and its Applications, vol 42. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2898-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2898-1_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7712-5

  • Online ISBN: 978-1-4612-2898-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics