Skip to main content

Stability of Laminar Diffusion Flames in Compressible Mixing Layers

  • Chapter

Part of the book series: ICASE/NASA LaRC Series ((ICASE/NASA))

Abstract

This review examines the question of stability of laminar diffusion flames embedded in compressible mixing layers. Since stability characteristics depends on the structure of the mean flow, the first portion of this review will discuss our current understanding of the structure of diffusion flames in compressible mixing layers. The second portion of this review will discuss our present understanding of the stability of these flows. In both sections a number of important and little understood problems are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bechert, D. W. (1985) Excitation of Instability Waves. Z. Flugwiss. Weltraumforsch., 9, pp. 356 – 361.

    Google Scholar 

  2. Briggs, R.J. (1964) Electron-Stream Interaction with Plasmas. Research Monograph No. 29, MIT Press, Cambridge, Mass.

    Google Scholar 

  3. Brown, G.L. & Roshko, A. (1974) On Density Effects and Large Structure in Turbulent Mixing Layers. J. Fluid Mech., 64, pp. 775 – 816.

    Article  ADS  Google Scholar 

  4. Buckmaster, J.D. & Ludford, G.S.S. (1982) Theory of Laminar Flames. Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  5. Chinzei, N., Masuya, G., Komuro, T., Murakami, A. & Kudou, D. (1986) Spreading of Two-Stream Supersonic Turbulent Mixing Layers. Phys. Fluids, 29, pp. 1345 – 1347.

    Article  ADS  Google Scholar 

  6. Drummond, J.P. & Mukunda, H.S. (1988) A Numerical Study of Mixing Enhancement in Supersonic Reacting Flow Fields. AIAA Paper 88 - 3260.

    Google Scholar 

  7. Drummond, J. P., Rogers, R. Clayton & Hussaini, M. Y. (1986) A detailed numerical model of a supersonic reacting mixing layer, AIAA Paper No. 86-1427.

    Google Scholar 

  8. Ferri, A. (1973) Mixing-controlled supersonic combustion, Annual Review of Fluid Mechanics, Vol. 5, pp. 301–338.

    Article  ADS  Google Scholar 

  9. Gaster, M. (1968) Growth of Disturbances in Both Space and Time. Phys. Fluids, 11, pp. 723–727.

    Article  ADS  Google Scholar 

  10. Gaster, M. (1981) On Transition to Turbulence in Boundary Layers. In Transition and Turbulence, R.E. Meyer (ed.), Academic Press, pp. 95–112.

    Google Scholar 

  11. Givi, P., Madnia, C.K., Steinberger, C.J., Carpenter, M.H., & Drummond, J.P. (1990) Effects of Compressibility and Heat Release in a High Speed Reacting Mixing Layer. Comb. Sci. Tech., submitted.

    Google Scholar 

  12. Grosch, C.E. & Jackson, T.L. (1990a) Structure of Laminar Supersonic Diffusion Flames in a Compressible Mixing Layer. In progress.

    Google Scholar 

  13. Grosch, C.E. & Jackson, T.L. (1990b) Stability of a Compressible Mixing Layer with Finite Rate Chemistry. In progress.

    Google Scholar 

  14. Grosch, C.E. & Jackson, T.L. (1991) Inviscid Spatial Stability of a Three Dimensional Compressible Mixing Layer. J. Fluid Mech., in press.

    Google Scholar 

  15. Guirguis, R.H. (1988) Mixing Enhancement in Supersonic Shear Layers: m. Effect of Convective Mach Number. AIAA 88 - 0701.

    Google Scholar 

  16. Hannemann, K. & Oertel, H. (1989) Numerical Simulation of the Absolutely and Convectively Unstable Wake. J. Fluid Mech., 199, pp. 55 – 88.

    Article  ADS  MATH  Google Scholar 

  17. Hermanson, J.C. & Dimotakis, PE. (1989) Effects of Heat Release in a Turbulent, Reacting Shear Layer. J. Fluid Mech., 199, pp. 333 – 375.

    Article  ADS  Google Scholar 

  18. Hu, F.Q. & Jackson, T.L. (1990) Flame-Acoustic Interactions Induced by a Wavy Wall. In progress.

    Google Scholar 

  19. Hu, F.Q., Jackson, T.L., and Grosch, C.E. (1990) Structure of Laminar Supersonic Diffusion Flames in the Presence of a Pressure Gradient In progress.

    Google Scholar 

  20. Huene, P. (1987) Spatio-Temporal Instabilities in Closed and Open Flows. In Instabilitiesand Nonequilibrium Structures, E. Triapegui and D. Villarroel (eds.), D. Reidel Publishing Co., pp. 141 – 177.

    Google Scholar 

  21. Huene, P. & Monkewitz, P.A. (1985) Absolute and Convective Instabilities in Free Shear Layers. J. Fluid Mech., 159, pp. 151 – 168.

    Article  MathSciNet  ADS  Google Scholar 

  22. Huene, P. & Monkewitz, P.A. (1990) Local and Global Instabilities in Spatially Developing Flows. Annu. Rev. Fluid Mech., 22, pp. 473 – 537.

    Article  ADS  Google Scholar 

  23. Hultgren, L.S. & Aggarwal, A.K. (1987) Absolute Instability of the Gaussian Wake Profile. Phys. Fluids, 30, pp. 3383 – 3387.

    Article  ADS  Google Scholar 

  24. Jackson, T.L. & Grosch, C.B. (1989) Inviscid Spatial Stability of a Compressible Mixing Layer. J. Fluid Mech., 208, pp. 609–637.

    Google Scholar 

  25. Jackson, TL. & Grosch, C.E. (1990a) Inviscid Spatial Stability of a Compressible Mixing Layer. Part II. The Flame Sheet Model. J. Fluid Mech., 217, pp. 391–420. 217, pp. 391 – 420.

    Article  Google Scholar 

  26. Jackson, T.L. & Grosch, C.E. (1990b) Absolute/Convective Instabilities and the Convective Mach Number in a Compressible Mixing Layer. Phys. Fluids A, 2 (6), pp. 949 – 954.

    Article  ADS  MATH  Google Scholar 

  27. Jackson, T.L. & Grosch, CJE. (1990c) Zero Wavenumber Modes of a Compressible Supersonic Mixing Layer. Submitted.

    Google Scholar 

  28. Jackson, T.L. & Grosch, C.E. (1991) Inviscid Spatial Stability of a Compressible Mixing Layer. Part III. Effect of Thermodynamics. J. Fluid Mech., 224, pp. 159 – 175.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Jackson, T.L. & Hussaini, M.Y. (1988) An Asymptotic Analysis of Supersonic Reacting Mixing Layers. Comb. Sci. Tech., 57, pp. 129 – 140.

    Article  Google Scholar 

  30. Kapila, A.K. (1990) Role of Acoustics in Combustion Instability. To appear in the proceedings of the Combustion Workshop, Springer- Verlag. Conference held in Newport News, Va. October 4 – 5, 1989.

    Google Scholar 

  31. Lees, L. & Lin, C.C. (1946) Investigation of the stability of the laminar boundary layer in a compressible fluid. NACA Tech. Note 1115.

    Google Scholar 

  32. Leib, SJ. & Goldstein, M.E. (1986a) The Generation of Capillary Instabilities on a Liquid Jet J. Fluid Mech., 168, pp. 479 – 500.

    Article  ADS  MATH  Google Scholar 

  33. Leib, S J. & Goldstein, M.E. (1986b) Convective and Absolute Instability of a Viscous Liquid Jet Phys. Fluids, 29, pp. 952 – 954.

    Article  ADS  Google Scholar 

  34. Lele, S.K. (1989) Direct Numerical Simulation of Compressible Free Shear Layer Hows. AIAA 89 - 0374.

    Google Scholar 

  35. Linan, A. & Crespo, A. (1976) An asymptotic analysis of unsteady diffusion flames for large activation energies, Comb. Sci. Tech., 14, pp. 95 – 117.

    Google Scholar 

  36. Mack, L. M. (1984) Boundary layer linear stability theory. In Special Course on Stability and Transition of Laminar Flow. AGARD Report R-709, 3-1 to 3 - 81.

    Google Scholar 

  37. Marble, F. E. & Adamson, T. C. (1954) Ignition and combustion in a laminar mixing zone, Jet Propulsion, 24, pp. 85 – 94.

    Google Scholar 

  38. McMurtry, P.A., Riley, J.J., & Metcalfe, R.W. (1989) Effects of Heat Release on the Large-Scale Structure in Turbulent Mixing Layers. J. Fluid Mech., 199, pp. 297 – 332.

    Article  ADS  Google Scholar 

  39. Monkewitz, P.A. (1988) The Absolute and Convective Nature of Instability in Two-Dimensional Wakes at Low Reynolds Numbers. Phys. Fluids, 31, pp. 999 – 1006.

    Article  ADS  Google Scholar 

  40. Monkewitz, P.A. & Sohn, K.D. (1986) Absolute Instability in Hot Jets and Their Control. AIAA 86 - 1882.

    Google Scholar 

  41. Mukunda, H.S., Sekar, B., Carpenter, M., Drummond, JP., & Kumar, A. (1989) Studies in Direct Simulations of High Speed Mixing Layers. NASA TP, to appear.

    Google Scholar 

  42. Papageorgiou, D.T. (1990) Linear Instability of the Supersonic Wake Behind a Flat Plate Aligned with a Uniform Stream. Theoretical and Computational Fluid Dynamics, 1, pp. 327 – 348.

    Article  ADS  MATH  Google Scholar 

  43. Papamoschou, D. & Roshko, A. (1986) Observations of supersonic free-shear layers. AIAA Paper No. 86 - 0162.

    Google Scholar 

  44. Papamoschou, D. & Roshko, A. (1988) The compressible turbulent shear layer: an experimental study. J. Fluid Mech., 197, pp. 453 – 477.

    Article  ADS  Google Scholar 

  45. Pavithran, S. & Redekopp, L.G. (1989) The Absolute-Convective Transition in Subsonic Mixing Layers. Phys. Fluids A, 1 (10), pp. 1736 – 1739.

    Article  ADS  Google Scholar 

  46. Sandham, N. & Reynolds, W. (1990) The Compressible Mixing Layer: Linear Theory and Direct Simulation. AIAA J., 28 (4), pp. 618 – 624.

    Article  ADS  Google Scholar 

  47. Shin, D. & Ferziger, J. (1990a) Linear Stability of the Reacting Mixing Layer. AIAA 90 - 0268.

    Google Scholar 

  48. Shin, D. & Ferziger, J. (1990b) Inviscid Stability of Compressible Reacting Mixing Layer. Bull. Am. Phys. Soc., 35, p. 2297.

    Google Scholar 

  49. Stewartson, K. (1964) The Theory of Laminar Boundary Layers in Compressible Fluids. Oxford University Press, Great Britain.

    MATH  Google Scholar 

  50. Stewartson, K. (1974) Multistructured Boundary Layers on Flat Plates and Related Bodies. Advances in Applied Mechanics, 14, pp. 145–239, Academic Press.

    Google Scholar 

  51. Williams, F.A. (1985) Combustion Theory, 2nd Ed., The Benjamin/Cummings Pub. Co., Menlo Park, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag, New York, Inc.

About this chapter

Cite this chapter

Jackson, T.L. (1992). Stability of Laminar Diffusion Flames in Compressible Mixing Layers. In: Hussaini, M.Y., Kumar, A., Voigt, R.G. (eds) Major Research Topics in Combustion. ICASE/NASA LaRC Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2884-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2884-4_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7708-8

  • Online ISBN: 978-1-4612-2884-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics