Skip to main content

Transition to Detonation - Role of Explosion within an Explosion

  • Chapter
Major Research Topics in Combustion

Part of the book series: ICASE/NASA LaRC Series ((ICASE/NASA))

Abstract

A survey of experimental and analytical results is used to show that detonation-deflagration transition, direct or blast initiation as well as the steady propagation of detonation waves all involve explosions within explosions. Even the steady propagation of a detonation is shown to be an inherently unsteady process. The Zel’dovitch criterion for direct initiation is used to show how combustible mixtures can become sensitized by gas dynamic and physical processes until even a small random disturbance is sufficient to set off an explosion within an explosion which, in turn, can lead to the initiation of a detonation. The ability to predict the onset of detonation requires a more complete understanding of the “Explosion within an explosion”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee,J.H.S., “Initiation of Gaseous Detonation”, Ann. Rev.Phvs.Chem.-v.28. 75–104, (1977)

    Google Scholar 

  2. Zel’dovitch, Y.B., Kogarko, S.M., and Simonov, N.N., “An experimental investigation of spherical detonation of gases”, Sov. Phvs. Tech. Phvs.. V.l, 1698, (1956)

    Google Scholar 

  3. Sedov, L.I, L.I., “Similarity and Dimensional Methods in Mechanics”, 4th edn., Academic Press, N.Y., (1959).

    Google Scholar 

  4. Sichel, M., “A simple analysis fo the blast initiation of detonations”, Acta Astronautica.V. 4, 409 – 424, (1977)

    ADS  Google Scholar 

  5. Guirao, C.M., Knystautas, R., and Lee, J.H.S., “A Summary of Hydrogen-Air Detonation Experiments”, Rept. NUREG/CR-4961, prepared at McGill University for the U.S. Nuclear Regulatory Commission, May, (1989).

    Google Scholar 

  6. Sichel, M., “Modeling of Gaseous and Heterogeneous Detonation Phenomena”, Transactions of the Twenty-Seventh Conference of Army Mathematicians, ARO Report 82 - 1, (1982).

    Google Scholar 

  7. Sichel, M, M., “The Detonation of Sprays: Recent Results”, pp.265–301, Fuel Air Explosions. Univ. of Waterloo Press, (1982).

    Google Scholar 

  8. Veyssiere, B., “Double-Front Detonations in Gas-Solid Paticles Mixtures”.pp.264–276.Dynamics of Explosions.Vol. 114, Progress in Astronautics and Aeronautics, AIAA, (1988).

    Google Scholar 

  9. Lin, Z.C., Nicholls, J.A., Tang, M.J., Kauffman,C.W., and Sichel, M., “Vapor Pressure and Sensitization Effects in Detonation of a Decane Sprav”.pp. 1709–1716. Proceedings of the 20th Symposium ttnternationan on Combustion. The Combustion Institute, (1984).

    Google Scholar 

  10. Kauffman C.W., Wolanski, P., Arisoy, A., Adams, P.R., and Maker, B.N., “Dust, Hybrid, and Dusty Detonations”, pp. 221–240, Dynamics of Shock Waves. Explosions, and Detonations. Vol. 94, Progress in Astronautics and Aeronautics, AIAA, (1984)

    Google Scholar 

  11. Dabora, E.K., Ragland, K.W., and Nicholls, J.A., “Drop Size Effects in Spray Detonations”, Proceedings of the Twelfth Svmpsium (International on Combustion. The Combustion Institute, (1969).

    Google Scholar 

  12. Bar Or,R., Sichel, M., and Nicholls, J.A, J.A., “The Propagation of Cylindrical Detonations in Monodisperse Sprays”, Proceedings of the Eighteenth Svmpsium (International on Combustion. The Combustion Institute, (1981).

    Google Scholar 

  13. Zhang, F., and Gronig, H., “Detonation Structure of Corn Starch Particles-Oxygen Mixture”, presented at 12th International Colloquium on the Dynamics of Explosions and Reactive Systems, Ann Arbor, MI, July (1989).

    Google Scholar 

  14. Oran, E.S, Boris, J.P., Young, T., Burks, T., and Picone, M., pp. 1641–1649, 18th Symposium flnteniationan on Combustion. The Combustion Institute, (1982).

    Google Scholar 

  15. Taki, S., and Fujiwara, T, T., “Numerical Simulation of Triple Shock Behavior of Gaseous Detonation”, pp. 1671–1681, 18th Symposium (International) on Combustion. The Combustion Institute, (1982).

    Google Scholar 

  16. Fujiwara, T., and Reddy, K.V., “Propagation Mechanism of Detonation-Three-Dimensional Phenomena”, presented at 12th International Colloquim on the Dynamics of Explosions and Reactive Systems, Ann Arbor, MI, July (1989).

    Google Scholar 

  17. Schoffel, S.U. and Ebert, F.,pp.3–31, Dynamics of Explosions. Vol. 114, Progress in Astronautics and Aeronautics, AIAA, (1988).

    Google Scholar 

  18. Cherpanov, G.P, G.P., “The Theory of Detonations in Heterogeneous Systems”, PMTF. vol.4, Moscow, (1965).

    Google Scholar 

  19. Pierce, T.H., “Experimental and Theoretical Study of the Structure of Two Phase Detonations in Sprays”, PhD thesis, The University of Michigan, Ann Abor, (1972).

    Google Scholar 

  20. Dabora, E.K., “A Model for Spray Detonation”, Acta Astronautics, vol. 6, p. 269, (1979).

    Google Scholar 

  21. Nettleton, M.A., “Gaseous Detonations, Their Nature, Effects, and Control”, Chapman and Hall, (1987).

    Google Scholar 

  22. Bartlma, F., and Schroder, K., “The Diffraction of a Plane Detonation Wave at a Convex Corner”, Combustion and Flame, vol 66, pp. 237 – 248, (1986).

    Google Scholar 

  23. Liu, J.C., Liou, J.J., Sichel, M., Kauffman, C.W., and Nicholls, J.A.,pp. 1639–1647,“Diffraction and Transmission of a Detonation into a bounding Explosive Layer”, 21st Symposium (International on Combustion. The Combustion Institute, (1986).

    Google Scholar 

  24. Liu, J.C., Kauffman, C.W and Sichel, M., “Lateral Interaction of Detonating and Detonable Gaseous Mixtures”, pp.264–283.Dvnamics of Explosions. Vol. 114, Progress in Astronautics and Aeronautics, AIAA, (1988).

    Google Scholar 

  25. Dabora, E.K., Desbordes, D., Guerraud, C., “Oblique Detonation at High Velocities”, presented at 12th International Colloquim on the Dynamics of Explosions and Reactive Systems, Ann Arbor, MI, July (1989).

    Google Scholar 

  26. Liou, J.J., “Analysis of the Wave Interaction Between a Propagating Detonation and a Bounding Explosive Layer”, PhD thesis, The University of Michigan, Ann Arbor, MI, (1986).

    Google Scholar 

  27. Fickett, W., and Wood, W.W, W.W., “Flow Calculations for Pulsating One Dimensional Detonations”, Phvs. Fluids, Vol.9, 903, (1966), see also Fickett, W. and Davis, W.C., Detonation. Univ. of California Press, (1979).

    Google Scholar 

  28. Kailasanath, K.,and Oran, E.S., “Power-Energy Relations for the Direct Initiation of Gaseous Detonations”, pp.38–54 Dynamics of Shock Waves, Explosions, and Detonations. Vol. 94, Progress in Astronautics and Aeronautics, AIAA, (1983)

    Google Scholar 

  29. Kurylo, J., Thomsen, J.M., and Sauer, F.M., “Direct Initiation in LNG/Air Clouds”, pp.262-301, Shock Waves. Explosions, and Detonations.Vol. 87, Progress in Astronautics and Aeronautics, AIAA, (1981).

    Google Scholar 

  30. Boni, A.A., Wilson, C.W., Chapman, J., and Cook, J.L., “A Study of Detonation in Methane Air Clouds”, Acta Astron. vol 5, pp. 1153 – 1169, (1978).

    Google Scholar 

  31. Eidelman, S., and Sichel, M., “The Transitional Structure if Detonation Waves in Multi-Phase Reactive Media”, Comb.Sci. and Tech.. vol. 26, pp. 215 – 224, (1981)

    Google Scholar 

  32. Sichel, M., “Numerical Modeling of Heterogenous Detonations”, to appear as a chapter in the book Numerical Approaches to Combustion Modeling. E.S. Oran and J. Boris, eds., Amer. Inst, of Aeronaut, and Astronaut.

    Google Scholar 

  33. Jones, D.A., Sichel, M., Guirguis, R., and Oran, E.S., “Numerical Simulation of Layered Detonations”, presented at the 12th Inernational Colloquium on the Dynamics of Explosions and Reactive Systems, (and to appear in the Proceedings), Ann Arbor, MI, July (1989)

    Google Scholar 

  34. Jones, D.A., Sichel, M.,Oran, E.S., and Guirguis, R., “Detonation Transmission in Layered Explosives”, to be presented at the Twenty-third Symposium (International) on Combustion, Orleans, France, July (1990).

    Google Scholar 

  35. Lee, J.H.S., “On the Transition from Deflagration to Detonation”. Dynamics of Explosions. Vol. 106, pp.3–18, Progress in Astronautics and Aeronautics, AIAA, (1986).

    Google Scholar 

  36. Taylor, G.I., and Tankin, R.S., “Gas Dynamic Aspects of Detonation”, in Fundamentals of Gas Dynamics, vol. Ill, in the Princeton Series in High Speed Aerodynamics and Jet Propulsion, Princeton University Press, (1958).

    Google Scholar 

  37. “The rate of expansion in gases”, Phil. Trans. Rov.Soc, London A184, pp. 97–188, (1893)

    Google Scholar 

  38. Urtiew, P.A., and Oppenheim, A.K., Comb. Flame, vol. 9, p. 405, (1965).

    Article  Google Scholar 

  39. Urtiew, P.A., and Oppenheim, A.K., Proc. Rov. Soc.. vol.A295, (1966).

    Google Scholar 

  40. Shchelkin, K.J., Soviet Phvsics JETP. vol. 2, pp. 296 – 200, (1956).

    Google Scholar 

  41. Peraldi, O., Knystautas, R. and Lee, J.H, J.H., “Criteria for Transition to Detonation in Tubes”, Twenty-first Symposium flnterpatiQnal) on Combustion, pp.1629–1637, The Combustion Institute, (1988).

    Google Scholar 

  42. Teodorczyk, A., Lee J.H.S., and Knystautas, R, R., “Propagation Mechanism of Quasi-Detonations”, Twenty-Second Symposium (International) on Combustion, pp.1723–1731, The Combustion Institute, (1989).

    Google Scholar 

  43. Gardner, B.R., Winter, R.J., and Moore, MJ, MJ., “Explosion Development and Deflagration-To-Detonation Transition in Coal Dust/Air Suspensions”, Twenty-first Symposium (International) on Combustion, pp.335–343, The Combustion Institute, (1988).

    Google Scholar 

  44. Srinath, S.R., Kauffman, C.W., Nicholls, J.A., and Sichel, M., “Flame Propagation due to Layered Combustible Dust”, Dynamics of Reactive Systems.Vol. 105, Part II, p. 196, Progress in Astronautics and Aeronautics, AIAA, (1986).

    Google Scholar 

  45. Lee, J.H.S, J.H.S., “On the Universal Role of Turbulence in the Propagation of Deflagrations and Detonations”, Computational Fluid Dvanmics and Reacting Gas Flows. Vol. 12, pp. 169–193, The IMA Volumes in Mathematics and its Applications, B. Engquist, M. Luskin, A. Majda, Eds., Springer Verlag, (1988).

    Google Scholar 

  46. Korobeinikov, V.P., and Tsitsiashvili, G.S., “On the probability of arising and propagation of coal mine explosions”, to appear in Archivum Combustions.

    Google Scholar 

  47. Zel’dovitch, Y.B., Gelfand, B.E., Tsyganov, S.A., Frolov, S.M., and Polenov, A.N., “Concentration and Temperature Nonuniformities of Combustible Mixtures as Reason for Pressure Waves Generation”, Dynamics of Explosions. Vol. 114, pp.99–123, Progress in Astronautics and Aeronautics, AIAA, (1988).

    Google Scholar 

  48. Strehlow, R.A., Combustion Fundamentals, Mc Graw Hill, (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag, New York, Inc.

About this chapter

Cite this chapter

Sichel, M. (1992). Transition to Detonation - Role of Explosion within an Explosion. In: Hussaini, M.Y., Kumar, A., Voigt, R.G. (eds) Major Research Topics in Combustion. ICASE/NASA LaRC Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2884-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2884-4_24

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7708-8

  • Online ISBN: 978-1-4612-2884-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics