On The Transition from Deflagration to Detonation

  • Joseph E. Shepherd
  • John H. S. Lee
Part of the ICASE/NASA LaRC Series book series (ICASE/NASA)


An introduction is given to the problem and principal research themes of the deflagration-to-detonation transition phenomenon. The key ideas of flame acceleration and detonation initiation are briefly discussed. Recent research is described with an emphasis on photographic studies of the propagation mechanisms of quasi-detonations. Theoretical notions about the spontaneous development of detonation are reviewed. Relationships between hotspots, reaction waves, and shock wave amplification are emphasized.


Detonation Wave Burning Velocity Turbulent Flame Flame Speed Laminar Flame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lee, J.H.S. and Moen, I., “The Mechanism of Transition from Deflagration to Detonation in Vapor Cloud Explosion”. Prog. Energy Combust. Sci. 6, 359 – 389, 1980.CrossRefGoogle Scholar
  2. [2]
    Sivashinsky, G. I.“Instabilities, Pattern Formation, and Turbulence in Flames,” Ann. Rev. of Fluid Mech. 15, 179 – 199, 1983.ADSCrossRefGoogle Scholar
  3. [3]
    Williams, F. A. Combustion Theory, 2nd Edition, Chap. 10, Benjamin/Cummings, 1985.Google Scholar
  4. [4]
    Peters, N. “Laminar Flamelet Concepts in Turbulent Combustion,” 21st Symp. (Intl.) on Combustion, The Combustion Institute, 1231 – 1250, 1988.Google Scholar
  5. [5]
    Chomiak, J. Combustion, Gordon and Breach, Chap. 3, 1990.Google Scholar
  6. [6]
    Abdel-Gayed, R. G., Bradley, D., and Lau, A. K. C. “The Straining of Premixed Turbulent Flames,” 22nd Symp. (Intl.) on Combustion, The Combustion Institute, 731 – 738, 1989.Google Scholar
  7. [7]
    Batchelor, G. K. “The effect of homogeneous turbulence on material lines and surfaces,” Proc. Roy. Soc. A, 213, 349, 1952.MathSciNetADSMATHCrossRefGoogle Scholar
  8. [8]
    Yip, Y. W. G., Strehlow, R. A., and Ormsbee, A. I. “An Experimental Investigation of Two Dimensional Flame-Vortex Interactions,” 20th Symp. (Intl.) on Combustion, The Combustion Institute, 1655 – 1662, 1984.Google Scholar
  9. [9]
    Cattolica, R. J. and Vosen, S. R. Comb. Flame 68, 267, 1987.Google Scholar
  10. [10]
    Jarosinki, J., Lee, J. H. S., and Knystautas, R. “Interaction of a Vortex Ring and a Laminar Flame,” 22nd Symp. (Intl.) Combustion, The Combustion Institute, 505 – 514, 1989.Google Scholar
  11. [11]
    Barr, P. K. “Simulation of Flame Propagation Through Vorticity Regions Using the Discrete Vortex Method,” Sandia National Laboratories Report SAND84-8715, 1984.Google Scholar
  12. [12]
    Cattolica, R. J., Barr, P. K., and Mansour, N. N. “Propagation of a Premixed Flame in a Divided-Chamber Combustor,” Comb. Flame77, 101 – 121, 1989.CrossRefGoogle Scholar
  13. [13]
    Barr, P. K. “Acceleration of a Flame by Flame-Vortex Interactions,” accepted for publication in Comb. Flame1990.Google Scholar
  14. [14]
    Lee, J. H. S., Knystautas, R., Chan, C., Barr, P. K., Grcar, J. F., and Ashurst, Wm. T. “Turbulent Flame Acceleration: Mechanisms and Computer Modeling,” Sandia National Laboratories Report SAND83-8655, 1985.Google Scholar
  15. [15]
    Peters, N. and Williams, F. A. “Premixed Combustion in a Vortex,” 22nd Symp. (Intl.) on Combustion, The Combustion Institute, 495 – 503, 1989.Google Scholar
  16. [16]
    Urtiew, P. and Oppenheim, A.K.,“Experimental observations of the transition to detonation in an exploding gas,” Proc. Roy. Soc. Lond. A 295, 13 – 28, 1966.ADSCrossRefGoogle Scholar
  17. [17]
    Meyer, J. W., Urtiew, P. A., and Oppenheim, A. K. “On the Inadequacy of Gasdynamic Processes for Triggering the Transition to Detonation,” Comb. Flame 14, 13 – 20, 1970.CrossRefGoogle Scholar
  18. [18]
    Rallis, C. J. and Garforth, A. M. “The Determination of Laminar Burning Velocity,” Prog. Energy Combust. Sci.6, 303 – 329, 1980.CrossRefGoogle Scholar
  19. [19]
    Rudinger, G. and Somers, L., “Behavior of Regions of different gases carried in accelerated flows,” J. Fluid Mech. 7, 161 – 176, 1960.ADSMATHCrossRefGoogle Scholar
  20. [20]
    Haas, J.F. and Sturtevant, B., “Interaction of weak shock waves with cylindrical and spherical gas inhomogenities,” J. Fluid Mech. 181, 41 – 76, 1987.ADSCrossRefGoogle Scholar
  21. [21]
    Picone, J.M. and Boris, J.P., “Vorticity generation by shock propagation through bubbles in a gas,” J. Fluid Mech.189, 23 – 51, 1988.ADSCrossRefGoogle Scholar
  22. [22]
    Kurylo, J., Dwyer, H. A., and Oppenheim, A. K. “Numerical Analysis of Flowfields Generated by Accelerating Flames,” AIAA J. 18, 302 – 308, 1981.ADSCrossRefGoogle Scholar
  23. [23]
    Deshaies, B. and Joulin, G. “Flame-Speed Sensitivity to Temperature Changes and the Deflagration-to-Detonation Transition,” Comb. Flame77, 201 – 212, 1989.CrossRefGoogle Scholar
  24. [24]
    Dupre, G., Peraldi, 0., Lee, J.H.S. and Knystautas, R., “Propagation of Detonation Waves in an Acoustic Absorbing Wailed Tube,” Prog. Astronautics and Aeronautics 114, 248 – 263, 1988.Google Scholar
  25. [25]
    Reddy, K.V., Fujiwara, T. and Lee, J.H.S., “Role of Transverse Waves in a Detonation Wave-A Study Based on Propagation in a Porous Wall Chamber”, Memoirs of Faculty of Engineering of Nagoya University, Vol. 40, No. 1 (1988).Google Scholar
  26. [26]
    Lee, J. H. S. “Dynamic Parameters of Gaseous Detonation,” Ann. Rev. Fluid Mech.16, 311 – 316, 1984.ADSCrossRefGoogle Scholar
  27. [27]
    Lee, J. H. S. “On the Transition from Deflagration to Detonation,” Prog. Astronautics and Aeronautics106, 3 – 18, 1986.Google Scholar
  28. [28]
    Westbrook, C. K. and Urtiew, P. A. “Prediction of Chemical Kinetic Parameters in Gaseous Detonation,” 19th Symp. (Intl.) on Combustion, The Combustion Institute, 615 – 623, 1982.Google Scholar
  29. [29]
    Shepherd, J. E. “Chemical Kinetics of Hydrogen-Air-Diluent Detonations,” Prog. Astronautics and Aeronautics106, 263 – 292, 1986.Google Scholar
  30. [30]
    Shepherd, J. E., Moen, I. 0., Murray, S. B., and Thibault, P. A. “Analyses of the Cellular Structure of Detonations,” 21st Symp. (Intl.) on Combustion, The Combustion Institute, 1649 – 1658, 1987.Google Scholar
  31. [31]
    Dorge, K. J., Pangritz, D., and Wagner, H. Gg. “Experiments on Velocity Augmentation of Spherical Flames by Grids,” Acta Astronautica 3, 1067 – 1067, 1976.CrossRefGoogle Scholar
  32. [32]
    Brossard, J., Desbordes, D., Difabio, N., Gamier, J. L., Lannoy, A., Leyer, J. C., Perrot, J., and Saint-Cloud, J.-P. Truly Unconfined Explosions of Ethylene-Air Mixtures, Prog. Astronautics and Aeronautics106, 90, 1986.Google Scholar
  33. [33]
    Wagner, H. Gg. “Some Experiments about Flame Acceleration,” Proc. of the Intl. Specialist Conf. on Fuel-Air Explosions, U. Waterloo Press, 77 – 99, 1981.Google Scholar
  34. [34]
    Moen, I. 0., Donato, M., Knystautas, R., Lee, J. H. “Flame Acceleration Due to Turbulence Produced by Obstacles,” Comb. Flame 39, 21 – 32, 1980.Google Scholar
  35. [35]
    Moen, I. 0., Donato, M., Knystautas, R., Lee, J. H., and Wagner, H. Gg. “Turbulent Flame Propagation and Acceleration in the Presence of Obstacles,” Prog. Astronautics and Aeronautics 75, 33 – 47, 1981.Google Scholar
  36. [36]
    Moen, I. 0., Lee, J. H. S., Hjertager, B. H., Fuhre, K., and Eckhoff, R. K. “Pressure Development due to Turbulent Flame Propagation in Large-Scale Methane-Air Explosions,” Comb. Flame47, 31 – 52, 1982.Google Scholar
  37. [37]
    Lee, J. H. S., Knystautas, R., and Freiman, A. “High-Speed Turbulent Deflagrations and Transition to Detonation in H2-Air Mixtures,” Comb. Flame56, 227 – 239, 1984.CrossRefGoogle Scholar
  38. [38]
    Lee, J. H., Knystautas, R., and Chan, C. K. “Turbulent Flame Propagation in Obstacle-Filled Tubes,” 20th Symp. (Intl.) on Combustion, The Combustion Institute, 1663 – 1672, 1985.Google Scholar
  39. [39]
    Knystautas, R., Lee, J. H. S., Peraldi, 0., and Chan, C. K. “Transmission of a Flame from a Rough to a Smooth-Walled Tube,” Prog. Astronautics and Aeronautics106, 37 – 52, 1986.Google Scholar
  40. [40]
    Thibault, P. A., Liu, Y. K., Chan, C., Lee, J. H., Knystautas, R., Guirao, C., Hjertager, B., and Fuhre, K. “Transmission of an Explosion Through an Orifice,” 19th Symp. (Intl.) on Combustion, The Combustion Institute, 599 – 606, 1982.Google Scholar
  41. [41]
    Peraldi, 0., Knystautas, R., Lee, J. H. “Criteria for Transition to Detonation in Tubes,” 21st Symp. (Intl.) on Combustion, The Combustion Institute, 1629, 1988.Google Scholar
  42. [42]
    Chan, C. K. and Grieg, D. R. “The Structures of Fast Deflagrations and Quasi-Detonations,” 22nd Symp. (Intl.) on Combustion, The Combustion Institute, 1733 – 1739, 1988.Google Scholar
  43. [43]
    Teodorczyk, A., Lee, J. H. S., and Knystautas, R. “Propagation Mechanisms of Quasi-Detonations,” 22nd Symp. (Intl.) on Combustion, The Combustion Institute, 1723 – 1731, 1988.Google Scholar
  44. [44]
    Teodorczyk, A., Lee, J.H.S., and Knystautas, R., “Photographic Studies of the Structure and Propagation Mechanisms of Quasi-Detonations in a Rough Tube”, Presented at the 12th International Colloquium on the Dynamics of Explosions and Reactive Systems, University of Michigan, 23–28 July, 1989.Google Scholar
  45. [45]
    Knystautas, R., Lee, J. H., Moen, I., and Wagner, H. Gg. “Direct Initiation of Spherical Detonation by a Hot Turbulent Gas Jet,” 17th Symp. (Intl.) on Combustion, The Combustion Institute, 1235 – 1245, 1978.Google Scholar
  46. [46]
    Schildknecht, M., Geiger, W., and Stock, M. “Flame Propagation and Pressure Buildup in a Free Gas-Air Mixture due to Jet Ignition,” Prog. Astronautics and Aeronautics 94, 474 – 490, 1984.Google Scholar
  47. [47]
    Moen, I. 0., Bjerketvedt, D., Jenssen, A., and Thibault, P. A. “Transition to Detonation in a Large Fuel-Air Cloud,” Comb. Flame61, 285 – 291, 1985.CrossRefGoogle Scholar
  48. [48]
    Moen, I. 0., Bjerketvedt, D., Engebretsen, T., Jenssen, A., Hjertager, B. H., and Bakke, J. R. “Transition to Detonation in a Flame Jet,” Comb. Flame 75, 297 – 308, 1989.Google Scholar
  49. [49]
    Mackay, D. J., Murray, S. B., Moen, I. 0., and Thibault, P. A. “Flame-Jet Ignition of Large Fuel-Air Clouds,” 22nd Symp. (Intl.) on Combustion, The Combustion Institute, 1339 – 1353, 1988.Google Scholar
  50. [50]
    Cummings, J.C., Lee, J.H.S., Camp, A.L., Marx, K.D. “Analysis of Combustion in Closed or Vented Rooms and Vessels,” Plant/Operations Progress 3, 239 – 247, 1984.CrossRefGoogle Scholar
  51. [51]
    Cummings, J.C., Torczynski, J.R. and Benedick, W.B. Flame Acceleration in Mixtures of Hydrogen and Air, Sandia National Laboratories Report SAND86-0173,1987.Google Scholar
  52. [52]
    Chan, C., Moen, I.O., and Lee, J.H.S. “Influence of Confinement on Flame Acceleration Due to Repeated Obstacles,” Comb. Flame 49, 27 – 39, 1983.CrossRefGoogle Scholar
  53. [53]
    Urtiew, P.A., Brandeis, J. and Hogan, W.J. “Experimental Study of Flame Propagation in Semiconfined Geometries with Obstacles,” Combust. Sci. Tech. 30, 103 – 119, 1983.CrossRefGoogle Scholar
  54. [54]
    van Wingerden, C.J.M., and Zeeuwen, J.P. “Investigation of Explosion Enhancing Properties of a Pipe-Rack-Like Obstacle Array,” Prog. Astronautics and Aeronautics106, 53, 1986.Google Scholar
  55. [55]
    Sherman, M.P., Tieszen, S.R., Benedick, W.B., Fisk, J.W., and Carcassi, M. “The Effect of Transverse Venting on Flame Acceleration and Transition to Detonation in a Large Channel,” Prog. Astronautics and Aeronautics 106, 66, 1986.Google Scholar
  56. [56]
    Sherman, M.P., Tieszen, S.R., and Benedick, W.B. FLAME Facility, Sandia National Laboratories Report SAND85-1264, 1989Google Scholar
  57. [57]
    Tieszen, S.R., Sherman, M.P., Benedick, W.B. Flame Acceleration Studies in the MINIFLAME Facility, Sandia National Laboratories Report SAND89-0859,1989.Google Scholar
  58. [58]
    Moen, 1.0. Sulmistras, A., Hjertager, B.H., and Bakke, J.R. “Turbulent Flame Propagation and Transition to Detonation in Large Fuel-Air Clouds,” 21st Symp. (Intl.) on Combustion, 1617 – 1627, 1986.Google Scholar
  59. [59]
    Hjertager, B. H. “Influence of Turbulence on Gas Explosions,” J. Hazardous Materials 9, 315 – 346, 1984.CrossRefGoogle Scholar
  60. [60]
    Hjertager, B.H. “Simulation of Transient Compressible Turbulent Reactive Flow,” Combust. Sci. Tech. 27, 159 – 170, 1982.CrossRefGoogle Scholar
  61. [61]
    Marx, K.D. Development and Application of a Computer Model for Large-Scale Flame Acceleration Experiments, Sandia National Laboratories Report SAND87-8203, 1987. Google Scholar
  62. [62]
    Lee, J.H.S. “Initiation of Gaseous Detonation,” Ann. Rev. Phys. Chem. 28, 75 – 104, 1977.ADSCrossRefGoogle Scholar
  63. [63]
    Bach, G., Knystautas, R., and Lee, J.H.S. “Initiation of Spherical Detonation,” 13th Symp. (Intl.) on Combustion, The Combustion Institute, 1097 – 1110, 1970.Google Scholar
  64. [64]
    Clarke, J.F. “Fast Flames, Waves and Detonation,” Prog. Energy Combust. Sci. 15, 241 – 271, 1989.CrossRefGoogle Scholar
  65. [65]
    Ohyagi, S., Yoshihashi, T., and Harigaya, Y. “Direct Initiation of planar detonation in mehtane/oxygen/nitrogen mixtures,” Prog. Astronautics and Aeronautics 94, 3 – 22, 1984.Google Scholar
  66. [66]
    Strehlow, R.A., and Cohen, A. “Initiation of Detonations,” Phys. Fluids5, 97 – 101, 1962.ADSCrossRefGoogle Scholar
  67. [67]
    Gilbert, R.B. and Strehlow, R.A. “Theory of Detonation Initiation behind Reflected Shock Waves,” AIAA J. 4, 1777 – 1783, 1966.ADSCrossRefGoogle Scholar
  68. [68]
    Meyer, J.W. and Oppenheim, A.K. “On the Shock-Induced Ignition of Explosive Gases,” 13th Symp. (Intl.) on Combustion, The Combustion Institute, 1153 – 1164, 1970.Google Scholar
  69. [69]
    Oran, E.S., Young, T.R., Boris, J.P., and Cohen, A. “Weak and Strong Ignition: I. Numerical Simulations of Shock Tube Experiments,” Comb. Flame 48, 135 – 148, 1982.CrossRefGoogle Scholar
  70. [70]
    Voevodsky, V.V. and Soloukhin, R.I. “On the Mechanism and Explosion Limits of Hydrogen-Oxygen Chain Self-Ignition in Shock Waves,” 10th Symp. (Intl.) on Combustion, The Combustion Insitute, 279 – 283, 1965.Google Scholar
  71. [71]
    Kailasanath, K. and Oran, E.S. “Ignition of Flamelets behind Incident Shock Waves and the Transition to Detonation,” Comb. Sci. Tech. 34, 345 – 362, 1983.CrossRefGoogle Scholar
  72. [72]
    Clarke, J.F., Kassoy, D.R., and Riley, N. “On the direct initiation of a plane detonation wave,” Proc. R. Soc. Lond. A 408, 129 – 148, 1986.ADSMATHCrossRefGoogle Scholar
  73. [73]
    Clarke, J.F., Singh, G. “A numerical simulation of shock generated ignition using the random-choice method,” Numerical Combustion, Eds. A. Dervieux and B. Larrouturou, Lecture Notes in Physics 351, Springer, 22–35, 1989.Google Scholar
  74. [74]
    Lutz, A.E., Kee, R.J., Miller, J.A., Dwyer, H.A., and Oppenheim, A.K. “Dynamic Effects of Autoignition Centers for Hydrogen and Ci,2 Fuels,” 22nd Symp. (Intl.) on Combustion, The Combustion Institute, 1683 – 1693, 1989.Google Scholar
  75. [75]
    Jackson, T.L., Kapila, A.K., and Stewart, D.S. “Evolution of a Reaction Center in an Explosive Material,” SIAM J. on Applied Mathematics 49, 432 – 458, 1989.MathSciNetMATHCrossRefGoogle Scholar
  76. [76]
    Kapila, A.K., and Dold, J.W. “A Theoretical Picture of Shock-to-Detonation Transition in a Homogeneous Explosive,” to be published in the proceedings of 9th Symp. (Intl.) on Detonationheld in Portland, OR, August 1989.Google Scholar
  77. [77]
    Kapila, A.K., private communication, 1990.Google Scholar
  78. [78]
    Oran, E. S. and Gardner, J. H. Prog. Energy Combust. Sci.11, 253 – 276, 1985.CrossRefGoogle Scholar
  79. [79]
    Lee, J. H. S., Knystautas, R. and Yoshikawa, N. “Photochemical Initiation of Gaseous Detonation,” Acta Astronautica5, 971 – 982, 1978.CrossRefGoogle Scholar
  80. [80]
    Yoshikawa, N. “Coherent Shock Wave Amplification in Photochemical Initiation of Gaseous Detonation,” Ph. D. Thesis, Dept. Mechanical Engineering, McGill University, 1980.Google Scholar
  81. [81]
    Zel’dovich, Ya. B., Gelfand, B. E., Tsyganov, S. A., Frolov, S. M. and Polenov, A. N. “Concentration and Temperature Nonuniformities of Combustible Mixtures as Reason for Pressure Waves Generation,” Prog. Astronautics and Aeronautics114, 99 – 123, 1988.Google Scholar
  82. [82]
    Thibault, P.A. and Hassam, M., private communication, 1990.Google Scholar

Copyright information

© Springer-Verlag, New York, Inc. 1992

Authors and Affiliations

  • Joseph E. Shepherd
    • 1
  • John H. S. Lee
    • 2
  1. 1.Rensselaer Polytechnic InstituteTroyUSA
  2. 2.McGill UniversityMontrealCanada

Personalised recommendations