Skip to main content

On The Transition from Deflagration to Detonation

  • Chapter
Major Research Topics in Combustion

Part of the book series: ICASE/NASA LaRC Series ((ICASE/NASA))

Abstract

An introduction is given to the problem and principal research themes of the deflagration-to-detonation transition phenomenon. The key ideas of flame acceleration and detonation initiation are briefly discussed. Recent research is described with an emphasis on photographic studies of the propagation mechanisms of quasi-detonations. Theoretical notions about the spontaneous development of detonation are reviewed. Relationships between hotspots, reaction waves, and shock wave amplification are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, J.H.S. and Moen, I., “The Mechanism of Transition from Deflagration to Detonation in Vapor Cloud Explosion”. Prog. Energy Combust. Sci. 6, 359 – 389, 1980.

    Article  Google Scholar 

  2. Sivashinsky, G. I.“Instabilities, Pattern Formation, and Turbulence in Flames,” Ann. Rev. of Fluid Mech. 15, 179 – 199, 1983.

    Article  ADS  Google Scholar 

  3. Williams, F. A. Combustion Theory, 2nd Edition, Chap. 10, Benjamin/Cummings, 1985.

    Google Scholar 

  4. Peters, N. “Laminar Flamelet Concepts in Turbulent Combustion,” 21st Symp. (Intl.) on Combustion, The Combustion Institute, 1231 – 1250, 1988.

    Google Scholar 

  5. Chomiak, J. Combustion, Gordon and Breach, Chap. 3, 1990.

    Google Scholar 

  6. Abdel-Gayed, R. G., Bradley, D., and Lau, A. K. C. “The Straining of Premixed Turbulent Flames,” 22nd Symp. (Intl.) on Combustion, The Combustion Institute, 731 – 738, 1989.

    Google Scholar 

  7. Batchelor, G. K. “The effect of homogeneous turbulence on material lines and surfaces,” Proc. Roy. Soc. A, 213, 349, 1952.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Yip, Y. W. G., Strehlow, R. A., and Ormsbee, A. I. “An Experimental Investigation of Two Dimensional Flame-Vortex Interactions,” 20th Symp. (Intl.) on Combustion, The Combustion Institute, 1655 – 1662, 1984.

    Google Scholar 

  9. Cattolica, R. J. and Vosen, S. R. Comb. Flame 68, 267, 1987.

    Google Scholar 

  10. Jarosinki, J., Lee, J. H. S., and Knystautas, R. “Interaction of a Vortex Ring and a Laminar Flame,” 22nd Symp. (Intl.) Combustion, The Combustion Institute, 505 – 514, 1989.

    Google Scholar 

  11. Barr, P. K. “Simulation of Flame Propagation Through Vorticity Regions Using the Discrete Vortex Method,” Sandia National Laboratories Report SAND84-8715, 1984.

    Google Scholar 

  12. Cattolica, R. J., Barr, P. K., and Mansour, N. N. “Propagation of a Premixed Flame in a Divided-Chamber Combustor,” Comb. Flame77, 101 – 121, 1989.

    Article  Google Scholar 

  13. Barr, P. K. “Acceleration of a Flame by Flame-Vortex Interactions,” accepted for publication in Comb. Flame1990.

    Google Scholar 

  14. Lee, J. H. S., Knystautas, R., Chan, C., Barr, P. K., Grcar, J. F., and Ashurst, Wm. T. “Turbulent Flame Acceleration: Mechanisms and Computer Modeling,” Sandia National Laboratories Report SAND83-8655, 1985.

    Google Scholar 

  15. Peters, N. and Williams, F. A. “Premixed Combustion in a Vortex,” 22nd Symp. (Intl.) on Combustion, The Combustion Institute, 495 – 503, 1989.

    Google Scholar 

  16. Urtiew, P. and Oppenheim, A.K.,“Experimental observations of the transition to detonation in an exploding gas,” Proc. Roy. Soc. Lond. A 295, 13 – 28, 1966.

    Article  ADS  Google Scholar 

  17. Meyer, J. W., Urtiew, P. A., and Oppenheim, A. K. “On the Inadequacy of Gasdynamic Processes for Triggering the Transition to Detonation,” Comb. Flame 14, 13 – 20, 1970.

    Article  Google Scholar 

  18. Rallis, C. J. and Garforth, A. M. “The Determination of Laminar Burning Velocity,” Prog. Energy Combust. Sci.6, 303 – 329, 1980.

    Article  Google Scholar 

  19. Rudinger, G. and Somers, L., “Behavior of Regions of different gases carried in accelerated flows,” J. Fluid Mech. 7, 161 – 176, 1960.

    Article  ADS  MATH  Google Scholar 

  20. Haas, J.F. and Sturtevant, B., “Interaction of weak shock waves with cylindrical and spherical gas inhomogenities,” J. Fluid Mech. 181, 41 – 76, 1987.

    Article  ADS  Google Scholar 

  21. Picone, J.M. and Boris, J.P., “Vorticity generation by shock propagation through bubbles in a gas,” J. Fluid Mech.189, 23 – 51, 1988.

    Article  ADS  Google Scholar 

  22. Kurylo, J., Dwyer, H. A., and Oppenheim, A. K. “Numerical Analysis of Flowfields Generated by Accelerating Flames,” AIAA J. 18, 302 – 308, 1981.

    Article  ADS  Google Scholar 

  23. Deshaies, B. and Joulin, G. “Flame-Speed Sensitivity to Temperature Changes and the Deflagration-to-Detonation Transition,” Comb. Flame77, 201 – 212, 1989.

    Article  Google Scholar 

  24. Dupre, G., Peraldi, 0., Lee, J.H.S. and Knystautas, R., “Propagation of Detonation Waves in an Acoustic Absorbing Wailed Tube,” Prog. Astronautics and Aeronautics 114, 248 – 263, 1988.

    Google Scholar 

  25. Reddy, K.V., Fujiwara, T. and Lee, J.H.S., “Role of Transverse Waves in a Detonation Wave-A Study Based on Propagation in a Porous Wall Chamber”, Memoirs of Faculty of Engineering of Nagoya University, Vol. 40, No. 1 (1988).

    Google Scholar 

  26. Lee, J. H. S. “Dynamic Parameters of Gaseous Detonation,” Ann. Rev. Fluid Mech.16, 311 – 316, 1984.

    Article  ADS  Google Scholar 

  27. Lee, J. H. S. “On the Transition from Deflagration to Detonation,” Prog. Astronautics and Aeronautics106, 3 – 18, 1986.

    Google Scholar 

  28. Westbrook, C. K. and Urtiew, P. A. “Prediction of Chemical Kinetic Parameters in Gaseous Detonation,” 19th Symp. (Intl.) on Combustion, The Combustion Institute, 615 – 623, 1982.

    Google Scholar 

  29. Shepherd, J. E. “Chemical Kinetics of Hydrogen-Air-Diluent Detonations,” Prog. Astronautics and Aeronautics106, 263 – 292, 1986.

    Google Scholar 

  30. Shepherd, J. E., Moen, I. 0., Murray, S. B., and Thibault, P. A. “Analyses of the Cellular Structure of Detonations,” 21st Symp. (Intl.) on Combustion, The Combustion Institute, 1649 – 1658, 1987.

    Google Scholar 

  31. Dorge, K. J., Pangritz, D., and Wagner, H. Gg. “Experiments on Velocity Augmentation of Spherical Flames by Grids,” Acta Astronautica 3, 1067 – 1067, 1976.

    Article  Google Scholar 

  32. Brossard, J., Desbordes, D., Difabio, N., Gamier, J. L., Lannoy, A., Leyer, J. C., Perrot, J., and Saint-Cloud, J.-P. Truly Unconfined Explosions of Ethylene-Air Mixtures, Prog. Astronautics and Aeronautics106, 90, 1986.

    Google Scholar 

  33. Wagner, H. Gg. “Some Experiments about Flame Acceleration,” Proc. of the Intl. Specialist Conf. on Fuel-Air Explosions, U. Waterloo Press, 77 – 99, 1981.

    Google Scholar 

  34. Moen, I. 0., Donato, M., Knystautas, R., Lee, J. H. “Flame Acceleration Due to Turbulence Produced by Obstacles,” Comb. Flame 39, 21 – 32, 1980.

    Google Scholar 

  35. Moen, I. 0., Donato, M., Knystautas, R., Lee, J. H., and Wagner, H. Gg. “Turbulent Flame Propagation and Acceleration in the Presence of Obstacles,” Prog. Astronautics and Aeronautics 75, 33 – 47, 1981.

    Google Scholar 

  36. Moen, I. 0., Lee, J. H. S., Hjertager, B. H., Fuhre, K., and Eckhoff, R. K. “Pressure Development due to Turbulent Flame Propagation in Large-Scale Methane-Air Explosions,” Comb. Flame47, 31 – 52, 1982.

    Google Scholar 

  37. Lee, J. H. S., Knystautas, R., and Freiman, A. “High-Speed Turbulent Deflagrations and Transition to Detonation in H2-Air Mixtures,” Comb. Flame56, 227 – 239, 1984.

    Article  Google Scholar 

  38. Lee, J. H., Knystautas, R., and Chan, C. K. “Turbulent Flame Propagation in Obstacle-Filled Tubes,” 20th Symp. (Intl.) on Combustion, The Combustion Institute, 1663 – 1672, 1985.

    Google Scholar 

  39. Knystautas, R., Lee, J. H. S., Peraldi, 0., and Chan, C. K. “Transmission of a Flame from a Rough to a Smooth-Walled Tube,” Prog. Astronautics and Aeronautics106, 37 – 52, 1986.

    Google Scholar 

  40. Thibault, P. A., Liu, Y. K., Chan, C., Lee, J. H., Knystautas, R., Guirao, C., Hjertager, B., and Fuhre, K. “Transmission of an Explosion Through an Orifice,” 19th Symp. (Intl.) on Combustion, The Combustion Institute, 599 – 606, 1982.

    Google Scholar 

  41. Peraldi, 0., Knystautas, R., Lee, J. H. “Criteria for Transition to Detonation in Tubes,” 21st Symp. (Intl.) on Combustion, The Combustion Institute, 1629, 1988.

    Google Scholar 

  42. Chan, C. K. and Grieg, D. R. “The Structures of Fast Deflagrations and Quasi-Detonations,” 22nd Symp. (Intl.) on Combustion, The Combustion Institute, 1733 – 1739, 1988.

    Google Scholar 

  43. Teodorczyk, A., Lee, J. H. S., and Knystautas, R. “Propagation Mechanisms of Quasi-Detonations,” 22nd Symp. (Intl.) on Combustion, The Combustion Institute, 1723 – 1731, 1988.

    Google Scholar 

  44. Teodorczyk, A., Lee, J.H.S., and Knystautas, R., “Photographic Studies of the Structure and Propagation Mechanisms of Quasi-Detonations in a Rough Tube”, Presented at the 12th International Colloquium on the Dynamics of Explosions and Reactive Systems, University of Michigan, 23–28 July, 1989.

    Google Scholar 

  45. Knystautas, R., Lee, J. H., Moen, I., and Wagner, H. Gg. “Direct Initiation of Spherical Detonation by a Hot Turbulent Gas Jet,” 17th Symp. (Intl.) on Combustion, The Combustion Institute, 1235 – 1245, 1978.

    Google Scholar 

  46. Schildknecht, M., Geiger, W., and Stock, M. “Flame Propagation and Pressure Buildup in a Free Gas-Air Mixture due to Jet Ignition,” Prog. Astronautics and Aeronautics 94, 474 – 490, 1984.

    Google Scholar 

  47. Moen, I. 0., Bjerketvedt, D., Jenssen, A., and Thibault, P. A. “Transition to Detonation in a Large Fuel-Air Cloud,” Comb. Flame61, 285 – 291, 1985.

    Article  Google Scholar 

  48. Moen, I. 0., Bjerketvedt, D., Engebretsen, T., Jenssen, A., Hjertager, B. H., and Bakke, J. R. “Transition to Detonation in a Flame Jet,” Comb. Flame 75, 297 – 308, 1989.

    Google Scholar 

  49. Mackay, D. J., Murray, S. B., Moen, I. 0., and Thibault, P. A. “Flame-Jet Ignition of Large Fuel-Air Clouds,” 22nd Symp. (Intl.) on Combustion, The Combustion Institute, 1339 – 1353, 1988.

    Google Scholar 

  50. Cummings, J.C., Lee, J.H.S., Camp, A.L., Marx, K.D. “Analysis of Combustion in Closed or Vented Rooms and Vessels,” Plant/Operations Progress 3, 239 – 247, 1984.

    Article  Google Scholar 

  51. Cummings, J.C., Torczynski, J.R. and Benedick, W.B. Flame Acceleration in Mixtures of Hydrogen and Air, Sandia National Laboratories Report SAND86-0173,1987.

    Google Scholar 

  52. Chan, C., Moen, I.O., and Lee, J.H.S. “Influence of Confinement on Flame Acceleration Due to Repeated Obstacles,” Comb. Flame 49, 27 – 39, 1983.

    Article  Google Scholar 

  53. Urtiew, P.A., Brandeis, J. and Hogan, W.J. “Experimental Study of Flame Propagation in Semiconfined Geometries with Obstacles,” Combust. Sci. Tech. 30, 103 – 119, 1983.

    Article  Google Scholar 

  54. van Wingerden, C.J.M., and Zeeuwen, J.P. “Investigation of Explosion Enhancing Properties of a Pipe-Rack-Like Obstacle Array,” Prog. Astronautics and Aeronautics106, 53, 1986.

    Google Scholar 

  55. Sherman, M.P., Tieszen, S.R., Benedick, W.B., Fisk, J.W., and Carcassi, M. “The Effect of Transverse Venting on Flame Acceleration and Transition to Detonation in a Large Channel,” Prog. Astronautics and Aeronautics 106, 66, 1986.

    Google Scholar 

  56. Sherman, M.P., Tieszen, S.R., and Benedick, W.B. FLAME Facility, Sandia National Laboratories Report SAND85-1264, 1989

    Google Scholar 

  57. Tieszen, S.R., Sherman, M.P., Benedick, W.B. Flame Acceleration Studies in the MINIFLAME Facility, Sandia National Laboratories Report SAND89-0859,1989.

    Google Scholar 

  58. Moen, 1.0. Sulmistras, A., Hjertager, B.H., and Bakke, J.R. “Turbulent Flame Propagation and Transition to Detonation in Large Fuel-Air Clouds,” 21st Symp. (Intl.) on Combustion, 1617 – 1627, 1986.

    Google Scholar 

  59. Hjertager, B. H. “Influence of Turbulence on Gas Explosions,” J. Hazardous Materials 9, 315 – 346, 1984.

    Article  Google Scholar 

  60. Hjertager, B.H. “Simulation of Transient Compressible Turbulent Reactive Flow,” Combust. Sci. Tech. 27, 159 – 170, 1982.

    Article  Google Scholar 

  61. Marx, K.D. Development and Application of a Computer Model for Large-Scale Flame Acceleration Experiments, Sandia National Laboratories Report SAND87-8203, 1987.

    Google Scholar 

  62. Lee, J.H.S. “Initiation of Gaseous Detonation,” Ann. Rev. Phys. Chem. 28, 75 – 104, 1977.

    Article  ADS  Google Scholar 

  63. Bach, G., Knystautas, R., and Lee, J.H.S. “Initiation of Spherical Detonation,” 13th Symp. (Intl.) on Combustion, The Combustion Institute, 1097 – 1110, 1970.

    Google Scholar 

  64. Clarke, J.F. “Fast Flames, Waves and Detonation,” Prog. Energy Combust. Sci. 15, 241 – 271, 1989.

    Article  Google Scholar 

  65. Ohyagi, S., Yoshihashi, T., and Harigaya, Y. “Direct Initiation of planar detonation in mehtane/oxygen/nitrogen mixtures,” Prog. Astronautics and Aeronautics 94, 3 – 22, 1984.

    Google Scholar 

  66. Strehlow, R.A., and Cohen, A. “Initiation of Detonations,” Phys. Fluids5, 97 – 101, 1962.

    Article  ADS  Google Scholar 

  67. Gilbert, R.B. and Strehlow, R.A. “Theory of Detonation Initiation behind Reflected Shock Waves,” AIAA J. 4, 1777 – 1783, 1966.

    Article  ADS  Google Scholar 

  68. Meyer, J.W. and Oppenheim, A.K. “On the Shock-Induced Ignition of Explosive Gases,” 13th Symp. (Intl.) on Combustion, The Combustion Institute, 1153 – 1164, 1970.

    Google Scholar 

  69. Oran, E.S., Young, T.R., Boris, J.P., and Cohen, A. “Weak and Strong Ignition: I. Numerical Simulations of Shock Tube Experiments,” Comb. Flame 48, 135 – 148, 1982.

    Article  Google Scholar 

  70. Voevodsky, V.V. and Soloukhin, R.I. “On the Mechanism and Explosion Limits of Hydrogen-Oxygen Chain Self-Ignition in Shock Waves,” 10th Symp. (Intl.) on Combustion, The Combustion Insitute, 279 – 283, 1965.

    Google Scholar 

  71. Kailasanath, K. and Oran, E.S. “Ignition of Flamelets behind Incident Shock Waves and the Transition to Detonation,” Comb. Sci. Tech. 34, 345 – 362, 1983.

    Article  Google Scholar 

  72. Clarke, J.F., Kassoy, D.R., and Riley, N. “On the direct initiation of a plane detonation wave,” Proc. R. Soc. Lond. A 408, 129 – 148, 1986.

    Article  ADS  MATH  Google Scholar 

  73. Clarke, J.F., Singh, G. “A numerical simulation of shock generated ignition using the random-choice method,” Numerical Combustion, Eds. A. Dervieux and B. Larrouturou, Lecture Notes in Physics 351, Springer, 22–35, 1989.

    Google Scholar 

  74. Lutz, A.E., Kee, R.J., Miller, J.A., Dwyer, H.A., and Oppenheim, A.K. “Dynamic Effects of Autoignition Centers for Hydrogen and Ci,2 Fuels,” 22nd Symp. (Intl.) on Combustion, The Combustion Institute, 1683 – 1693, 1989.

    Google Scholar 

  75. Jackson, T.L., Kapila, A.K., and Stewart, D.S. “Evolution of a Reaction Center in an Explosive Material,” SIAM J. on Applied Mathematics 49, 432 – 458, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  76. Kapila, A.K., and Dold, J.W. “A Theoretical Picture of Shock-to-Detonation Transition in a Homogeneous Explosive,” to be published in the proceedings of 9th Symp. (Intl.) on Detonationheld in Portland, OR, August 1989.

    Google Scholar 

  77. Kapila, A.K., private communication, 1990.

    Google Scholar 

  78. Oran, E. S. and Gardner, J. H. Prog. Energy Combust. Sci.11, 253 – 276, 1985.

    Article  Google Scholar 

  79. Lee, J. H. S., Knystautas, R. and Yoshikawa, N. “Photochemical Initiation of Gaseous Detonation,” Acta Astronautica5, 971 – 982, 1978.

    Article  Google Scholar 

  80. Yoshikawa, N. “Coherent Shock Wave Amplification in Photochemical Initiation of Gaseous Detonation,” Ph. D. Thesis, Dept. Mechanical Engineering, McGill University, 1980.

    Google Scholar 

  81. Zel’dovich, Ya. B., Gelfand, B. E., Tsyganov, S. A., Frolov, S. M. and Polenov, A. N. “Concentration and Temperature Nonuniformities of Combustible Mixtures as Reason for Pressure Waves Generation,” Prog. Astronautics and Aeronautics114, 99 – 123, 1988.

    Google Scholar 

  82. Thibault, P.A. and Hassam, M., private communication, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag, New York, Inc.

About this chapter

Cite this chapter

Shepherd, J.E., Lee, J.H.S. (1992). On The Transition from Deflagration to Detonation. In: Hussaini, M.Y., Kumar, A., Voigt, R.G. (eds) Major Research Topics in Combustion. ICASE/NASA LaRC Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2884-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2884-4_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7708-8

  • Online ISBN: 978-1-4612-2884-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics