Skip to main content

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 124))

Abstract

Arsenic has both metallic and nonmetallic properties and is a member of the nitrogen family. It occurs as a free element and combined form being widely distributed in sulfide ores. The poisonous character of arsenic allowed for its use as a herbicide, cattle and sheep dips, and insecticides. The ubiquity of arsenic in the environment, its biological toxicity, and its redistribution are factors evoking public concern. This review will cover the chemistry of arsenic and methods curently used to speciate the prevalent chemical forms in various environments. The major focus of this review is on the biological transformations of arsenic in both the terrestrial and aquatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreae MO (1979) Arsenic speciation in seawater and interstitial waters: the influence of biological-chemical interactions on the chemistry of a trace element. Limnol Oceanogr 24(3): 440–452. Andreae MO, Klumpp D (1979) Biosynthesis and release of organoarsenic compounds by marine algae. Environ Sci Technol 13: 738–741.

    Article  CAS  Google Scholar 

  • Asher CJ, Reay PF (1979) Arsenic uptake by barley seedlings. Aust J Plant Physiol 6: 459–466.

    Article  CAS  Google Scholar 

  • Baker MD, Inniss WE, Mayfield CI, Wong PTS, Chau YK (1983a) Effect of pH on the methylation of mercury and arsenic by sediment microorganisms. Environ Technol Lett 4: 89–100.

    Article  CAS  Google Scholar 

  • Baker MD, Wong PTS, Chau YK, Mayfield CI, Inniss WE (1983b) Methylation of arsenic by freshwater green algae. Can J Fish Aquat Sci 40: 1245–1257.

    Article  Google Scholar 

  • Benson AA, Cooney RV, Herrera-Lasso JM (1981) Arsenic metabolism in algae and higher plants. J Plant Nutr 3: 285–292.

    Article  CAS  Google Scholar 

  • Benson AA, Nissen P (1982) The arsenolipids of aquatic plants. Dev Plant Biol 8: 121–124.

    CAS  Google Scholar 

  • Benson AA, Summons RE (1981) Arsenic accumulation in Great Barrier Reef invertebrates. Science 211: 482–483.

    Article  PubMed  CAS  Google Scholar 

  • Bird ML, Challenger F, Charlton PT, Smith JO (1948) Studies of biological methylation. II. The action of moulds on inorganic and organic compounds of arsenic. Biochem J 43: 78–83.

    CAS  Google Scholar 

  • Bottino NR, Cox ER, Irgolic KJ, Aeda S, McShane WJ, Stockton RA, Zingaro RA (1978a) Arsenic uptake and metabolism by the alga Testraselmis Chuii. In: Brinckman FE, Bellama JM (eds) Organometals and Organometalloids Occurrence and Fate in the Environment. Am Chem Soc Symp Ser 82: 116–129.

    Article  CAS  Google Scholar 

  • Bottino NR, Newman RD, Cox ER, Stockton RA, Hoban M, Zingaro RA, Irgolic KJ (1978b) The effects of arsenate and arsenite on the growth and morphology of the marine unicellular algae Tetraselmis Chuii(Chlorophyta) and Hymenomonas carterae(Chrysophyta). J Exp Mar Biol Ecol 33: 153–168.

    Article  CAS  Google Scholar 

  • Bowen HJM (1979) Environmental Chemistry of the Elements. Academic Press, New York.

    Google Scholar 

  • Braman RS, Foreback CC (1973) Methylated forms of arsenic in the environment. Science 182: 1247–1249.

    Article  PubMed  CAS  Google Scholar 

  • Button DK, Dunker SS, Morse ML (1973) Continuous culture of Rhodotorula rubra: kinetics of phosphate-arsenate uptake, inhibition, and phosphate-limited growth. J Bacteriol 113: 599–611.

    PubMed  CAS  Google Scholar 

  • Cannon JR, Edmonds JS, Francesconi KA, Raston CL, Saunders JB, Skelton BW, White AH (1981) Isolation, crystal structure, and synthesis of arsenobetaine, a constituent of the western rock lobster, the dusky shark, and some samples of human urine. Aust J Chem 34: 787–798.

    Article  CAS  Google Scholar 

  • Challenger F (1945) Biological methylation. Chem Rev 36: 315–361.

    Article  CAS  Google Scholar 

  • Challenger F, Higginbottom C, Ellis L (1933) The formation of organo-metalloid compounds by microorganisms. Part I. Trimethylarsine and dimethylethylarsine. J Chem Soc pp 95–101.

    Google Scholar 

  • Chau YK, Wong PTS (1978) Occurrence of biological methylation of elements in the environment. Am Chem Soc Symp Ser 82: 39–53.

    CAS  Google Scholar 

  • Chen C-M, Misra TK, Silver S, Rosen BP (1986) Nucleotide sequence of the structural genes for an anion pump. J Biol Chem 261: 15030–15038.

    PubMed  CAS  Google Scholar 

  • Cheng CN, Focht DD (1979) Production of arsine and methylarsines in soil and in culture. Appl Environ Microbiol 38: 494–498.

    PubMed  CAS  Google Scholar 

  • Chilvers DC, Peterson PJ (1987) Global cycling of arsenic. In: Hutchinson TC, Meema KM (eds) Lead, Mercury, Cadmium, and Arsenic in the Environment. John Wiley and Sons Ltd, New York, pp 279–301.

    Google Scholar 

  • Cooney RV, Benson AA (1980) Arsenic metabolism in Homarus americanus. Chemosphere 9: 335–341.

    Article  CAS  Google Scholar 

  • Cox DP, Alexander M (1973a) Production of trimethylarsine gas from various arsenic compounds by three sewage fungi. Bull Environ Contam Toxicol 9: 84–88.

    Article  PubMed  CAS  Google Scholar 

  • Cox DP, Alexander M (1973b) Effect of phosphate and other anions on trimethylarsine formation by Candida humicola. Appl Microbiol 25: 408–413.

    PubMed  CAS  Google Scholar 

  • Cox DP, Alexander M (1974) Factors affecting trimethylarsine and dimethylselenide formation by Candida humicola. J Microb Ecol 1: 136–144.

    Article  CAS  Google Scholar 

  • Crecelius EA (1975) The geochemical cycle of arsenic in Lake Washington and its relation to other elements. Limnol Oceanogr 20: 441–451.

    Article  CAS  Google Scholar 

  • Crecelius EA, Bothner MH, Carpenter R (1975) Geochemistries of arsenic, antimony, mercury, and related elements in sediments of Puget Sound. Environ Sci Technol 9: 325–333.

    Article  CAS  Google Scholar 

  • Cullen WR, McBride BC, Pickett AW (1979) The transformation of arsenicals by Candida humicola. Can J Microbiol 25: 1201–1205.

    Article  PubMed  CAS  Google Scholar 

  • Cullen WR, Erdman AE, McBride BC, Pickett AW (1983) The identification of dimethylphenylarsine as a microbial metabolite using a simple method of chemofocusing. J Microbiol Method 1: 297–303.

    Article  CAS  Google Scholar 

  • Cullen WR, Froese CL, Lui A, McBride BC, Patmore DJ, Reimer M (1977) The aerobic methylation of arsenic by microorganisms in the presence of L-methionine-methyl-d3. J Organometal Chem 139: 61–69.

    Article  CAS  Google Scholar 

  • Cullen WR, McBride BC, Pickett AW, Reglinski J (1984a) The wood preservative chromated copper arsenate is a substrate for trimethylarsine biosynthesis. Appl Environ Microbiol 47: 443–444.

    PubMed  CAS  Google Scholar 

  • Cullen WR, McBride BC, Reglinski J (1984b) The reaction of methylarsenicals with thiols: some biological implications. J Inorg Biochem 21: 179–194.

    Article  CAS  Google Scholar 

  • Cullen WR, McBride BC, Reglinski J (1984c) The reduction of trimethylarsine oxide to trimethylarsine by thiols: a mechanistic model for the biological reduction of arsenicals. J Inorg Biochem 21: 45–60.

    Article  CAS  Google Scholar 

  • Dabbs EA, Sole GJ (1988) Plasmid-borne resistance to arsenate, cadmium, and chloramphenicol in a Rhodococcusspecies. Mol Gen Genet 211: 148–154.

    Article  PubMed  CAS  Google Scholar 

  • Edmonds JS, Francesconi KA (1981a) Isolation and identification of arsenobetaine from the American lobster Homarus americanus. Chemosphere 10: 1041.

    Article  CAS  Google Scholar 

  • Edmonds JS, Francesconi KA (1981b) Arsenosugars from brown kelp (Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystem. Nature 289: 602–604.

    Article  CAS  Google Scholar 

  • Edmonds JS, Francesconi KA (1982) Isolation and crystal structure of an arsenic-containing sugar sulphate from the kidney of the giant clam, Tridacna maxima. X-ray crystal structure of (2S)-3[5-deoxy-5(dimethylarsinoyl)-B-D-ribofurano-syloxy]-2hydroxyroply hydrogen sulphate. J Chem Soc Perkin Trans Vol. 1 pp 2989–2993.

    Google Scholar 

  • Edmonds JS, Francesconi KA (1982) Isolation and crystal structure of an arsenic-containing sugar sulphate from the kidney of the giant clam, Tridacna maxima. X-ray crystal structure of (2S)-3[5-deoxy-5(dimethylarsinoyl)-B-D-ribofurano-syloxy]-2hydroxyroply hydrogen sulphate. J Chem Soc Perkin Trans Vol. 1 pp 2989–2993.

    Google Scholar 

  • Edmonds JS, Francesconi KA, Hansen JA (1982) Dimethyloxarsylethanol from anaerboic decomposition of brown kelp (Ecklonia radiata): a likely precursor of arsenobetaine in marine fauna. Experientia 38: 643.

    Article  CAS  Google Scholar 

  • Edmonds JS, Francesconi KA (1983) Arsenic-containing ribofuranosides: isolation from brown kelp Ecklonia radiataand nuclear magnetic resonance spectra. J Chem Soc Perkin Trans I, pp 2375–2382.

    Article  Google Scholar 

  • Edmonds JS, Francesconi KA, Cannon JR, Raston CL, Skelton BW, White AH (1977) Isolation, crystal structure and synthesis of arsenobetaine, the arsenical constituent of the western rock lobster Panulirus longipes cygnusGeorge. Tetrahedron Lett 18: 1543–1546.

    Article  Google Scholar 

  • Ferguson JF, Gavis J (1972) A review of the arsenic cycle in natural waters. Water Res 6: 1259–1274.

    Article  CAS  Google Scholar 

  • Fish GR (1963) Observation on excessive weed growth in two lakes in New Zealand. NZ J Bot 1: 410–418.

    Google Scholar 

  • Goldberg S, Glaubig RP (1988) Anion sorption of a calcareous, montmorillonitic soil-arsenic. Soil Sci Soc Am J 52: 1297–1300.

    Article  CAS  Google Scholar 

  • Hanaoka K, Matsumonto T, Tagawa S, Kaise T (1987) Microbial degradation of arsenobetaine, the major water soluble organoarsenic compound occurring in marine animals. Chemosphere 16: 2545–2550.

    Article  CAS  Google Scholar 

  • Hassler RA, Klein DA, Meglen RR (1984) Microbial contribution to soluble and volatile arsenic dynamics in retorted oil shale. J Environ Qual 13: 466–470.

    Article  Google Scholar 

  • Hiltbold AE (1975) Behavior of organoarsenicals in plants and soils. Am Chem Soc Symp Ser 7: 53–69.

    CAS  Google Scholar 

  • Hood RD, Associates (1985) Cacodylic acid: argicultural uses, biological effects, and environmental fate. Superintendent of Documents, U.S. Government Printing Office, Washington DC, p. 164.

    Google Scholar 

  • Howard AG, Arbab-Zavar MH, Apte S (1982) Seasonal variability of biological arsenic methylation in the estuary of the River Beaulieu. Mar Chem 11: 493–498.

    Article  CAS  Google Scholar 

  • Huang PM, Liaw WK (1978) Distribution and fractionation of arsenic in selected fresh water lake sediments. int Revue Gas Hydrobiol 63: 533–543.

    Article  CAS  Google Scholar 

  • Huysmans KD, Frankenberger WT Jr (1990) Arsenic resistant microorganisms isolated from agricultural drainage water and evaporation pond sediments. Water, Air, and Soil Pollution 53: 159–168.

    Article  CAS  Google Scholar 

  • Huysmans KD, Frankenberger WT Jr (1991) Evolution of trimethylarsine by a Penicilliumsp. isolated from agricultural evaporation pond water. Sci Total Environ 105: 13–28.

    CAS  Google Scholar 

  • Irgolic KJ, Stockton RA, Charkaborti D (1983) Determination of arsenic compounds in water supplies. In: Lederer WH, Fensterheim RJ (eds) Arsenic: Industrial, Biomedical, Environmental Perspectives. Van Nostrand, New York, pp 282–305.

    Google Scholar 

  • Johnson DL, Braman RS (1975) Alkyl and inorganic arsenic in air samples. Chemosphere 4: 333–338.

    Article  CAS  Google Scholar 

  • Kaise T, Hanaoka K, Tagawa S (1985) The formation of trimethylarsine oxide from arsenobetaine by biodegradation with marine microorganisms. Chemosphere 16: 2551–2558.

    Article  Google Scholar 

  • Kilkelly MK, Lindsay WL (1982) Selected trace elements in plants grown on retorted oil shales. J Environ Qual 11: 422–427.

    Article  CAS  Google Scholar 

  • Klumpp DW (1980) Characteristics of arsenic accumulation by seaweed Fucus spiralisand Ascophyllum nodosum. Mar Biol 58: 257–264.

    Article  CAS  Google Scholar 

  • Klumpp DW, Peterson PJ (1979) Arsenic and other trace elements in the waters and organisms of an estuary in S.W. England. Environ Pollut 19: 11–20.

    Article  CAS  Google Scholar 

  • Klumpp DW, Peterson PJ (1981) Chemical characteristics of arsenic in a marine food chain. Mar Biol 62: 297–305.

    Article  CAS  Google Scholar 

  • Knowles FC, Benson AA (1983) The biochemistry of arsenic. Trends Biochem Sci 8: 178–180.

    Article  CAS  Google Scholar 

  • Kurosawa S, Yasuda K, Taguchi M, Yamazaki S, Toda S, Morita M, Uehiro T, Fuwa K (1980) Identification of arsenobetaine, a water soluble organo-arsenic compound in muscle and liver of a shark, Prionace glaucus. Agri Chem 44: 1993–1994.

    Google Scholar 

  • LeBlanc PJ, Jackson AL (1973) Arsenic in marine fish and invertebrates. Mar Pollut Bull 4: 88–90.

    Article  CAS  Google Scholar 

  • Lemmo NV, Faust SD, Belton T, Tucker R (1983) Assessment of the chemical and biological significance of arsenical compounds in a heavily contaminated watershed. Part I. The fate and speciation of arsenical compounds in aquatic environments-a literature review. J Environ Sci Hlth A18: 335–387.

    Google Scholar 

  • Letey J, Roberts C, Penberth M, Vasek C (1986) An agricultural dilemma: drainage water and toxics disposal in San Joaquin Valley, Divison of Agricultural and Natural Resources, Unviersity of California, Publication 3319.

    Google Scholar 

  • Lunde G (1972) The analysis of arsenic in the lipid phase from marine and limnetic algae. Acta Chem Scandi 26: 2642–2644.

    Article  CAS  Google Scholar 

  • Lunde G (1973) The synthesis of fat and water-soluble arseno-organic compounds in marine and limnetic algae. Acta Chem Scand 27: 1586–1594.

    Article  PubMed  CAS  Google Scholar 

  • Luten JB, Riekwel-Booy G, Greef J vd, ten Noever de Brauw MC (1983) Identification of arsenobetaine in sole, lemon sole, flounder, dab, crab, and shrimp by field desorption and fast atom bombardment mass spectrometry. Chemosphere 12: 131-41.

    Article  CAS  Google Scholar 

  • Mackenzie FT, Lantzy RJ, Paterson V (1979) Global trace metal cycles and predictions. J Int Assoc Math Geol 11: 99–142.

    Article  CAS  Google Scholar 

  • Maher WA (1983) Inorganic arsenic in marine organisms. Mar Pollut Bull 14: 308–310.

    Article  CAS  Google Scholar 

  • McBride BC, Merilees H, Cullen WR, Pickett W (1978) Anaerobic and aerobic alkylation of arsenic. In: Brickman FE, Bellama JM (eds) Organometals and Organometalloids Occurrence and Fate in the Environment. Am Chem Soc Symp Ser 82: 94–115.

    Article  CAS  Google Scholar 

  • McBride BC, Wolfe RS (1971) Biosynthesis of dimethylarsine by methanobacterium. Biochem 10: 4312–4317.

    Article  CAS  Google Scholar 

  • Mehra HC, Frankenberger WT Jr (1988) Single-column ion chromatography. IV. Determination of arsenate in soils. Soil Sci Soc Am J 52: 1603–1606.

    CAS  Google Scholar 

  • Merril W, French DW (1964) The production of arsenious gases by wood rotting fungi. Proc Minn Acad Sci 31: 105–106.

    Google Scholar 

  • Mobley HLT, Chen C, Silver S, Rosen BP (1983) Cloning and expression of R-factor mediated arsenate resistance in Escherichia coli. Mol Gen Genet 191: 421–426.

    Article  PubMed  CAS  Google Scholar 

  • Mobley HT, Rosen BP (1982) Energetics of plasmid-mediated arsenate resistance in Escherichia coli. Proc Natl Acad Sci 79: 6119–6122.

    Article  PubMed  CAS  Google Scholar 

  • Morita M, Vehiro T, Fuwa K (1981) Determination of arsenic compounds in biological samples by HPLC with ICP detection. Anal Chem 53: 1806–1808.

    Article  CAS  Google Scholar 

  • Morrison JL (1969) Distribution of arsenic from poultry litter in broiler chickens, soil, and crops. J Agric Food Chem 17: 1288–1290.

    Article  CAS  Google Scholar 

  • Nakahara H, Ishikawa T, Sarai Y, Kondo I, Kozukue H, Silver S (1977) Linkage of mercury, cadmium, and arsenate and drug resistance in clinical isolates of Pseudomonas aeruginosa. Appl Environ Microbiol 33: 975–976.

    PubMed  CAS  Google Scholar 

  • Nissen P, Benson AA (1982) Arsenic metabolism in freshwater and terrestrial plants. Physiol Plant 54: 446–450.

    Article  CAS  Google Scholar 

  • Norin H, Christakopoulos A (1982) Evidence for the presence of arsenobetaine and another organoarsenical in shrimps. Chemosphere 11: 287–298.

    Article  CAS  Google Scholar 

  • Norin H, Ryhage R, Christakopoulos A, Sandstrom M (1983) New evidence for the presence of arsenocholine in shrimps (Pandalus borealis) by use of pyrolysis gas chromatography-atomic absorption spectrometry/mass spectrometry. Chemosphere 12: 299–315.

    Article  CAS  Google Scholar 

  • Onishi H, Sandell EB (1955) Geochemistry of arsenic. Geochim Cosmochim Acta 7: 1–33.

    Article  CAS  Google Scholar 

  • Osborne FH, Ehrlich HL (1976) Oxidation of arsenite by a soil isolate of alcaligenes. J Appl Bacteriol 41: 295–305.

    PubMed  CAS  Google Scholar 

  • Owens JW, Gladney ES (1976) The determination of arsenic in natural waters by flameless atomic absorption spectrometry. At Absorp News 15: 47–48.

    CAS  Google Scholar 

  • Penrose WR (1975) Biosynthesis of organic arsenic compounds in brown trout (Salmo trutta). J Fish Res Bd Can 32: 2387–2390.

    Google Scholar 

  • Pepper I, Galanti N, Sans J, Lopez-Saez JF (1988) Reversible inhibition of root growth and cell proliferation by pentavalent arsenic in Allium cepaL. Environ Exp Botany 28: 9–18.

    Article  CAS  Google Scholar 

  • Phillips SE, Taylor ML (1976) Oxidation of arsenite to arsenate by Alcaligenes faecalis. Appl Environ Microbiol 32: 392–399.

    CAS  Google Scholar 

  • Pickett AW, McBride BC, Cullen WR, Manji H (1981) The reduction of trimethylarsine oxide by Candida humicola. Can J Microbiol 27: 773–778.

    Article  PubMed  CAS  Google Scholar 

  • Planas D, Healey FP (1978) Effects of arsenate on growth and phosphorus metabolism of phytoplankton. J Phycol 14: 337–341.

    Article  CAS  Google Scholar 

  • Reay PF (1972) The accumulation of arsenic from arsenic-rich natural waters by aquatic plants. J Appl Ecol 9: 557–565.

    Article  Google Scholar 

  • Rosen BP, Weigel U, Karkaria C, Gangola P (1988) Molecular characterization of an anion pump. J Biol Chem 263: 3067–3070.

    PubMed  CAS  Google Scholar 

  • Rosenberg HR, Gerdes RG, Chegwidden K (1977) Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol 131: 505–511.

    PubMed  CAS  Google Scholar 

  • Sanders JG (1979a) The concentration and speciation of arsenic in marine macro-algae. Estuar Coast Mar Sci 9: 95–99.

    Article  CAS  Google Scholar 

  • Sanders JG (1979b) Effects of arsenic speciation and phosphate concentration of arsenic inhibition of Skeletonema costatum. J Phycol 15: 424–428.

    CAS  Google Scholar 

  • Sanders JG (1980) Arsenic cycling in marine systems. Mar Environ Res 3: 257–266.

    Article  CAS  Google Scholar 

  • Sanders JG, Windom HL (1980) The uptake and reduction of arsenic species by marine algae. Estuar Coast Mar Sci 10: 555–567.

    Article  CAS  Google Scholar 

  • Schraufnagel RA (1983) Arsenic in energy sources: a future supply or an environmental problem? In: Lederer WH, Fensterheim RJ (eds) Arsenic: Industrial, Biomedical, Environmental Perspectives. Van Nostrand Reinhold, New York, pp 17–41.

    Google Scholar 

  • Schroeder HA, Balassa JJ (1966) Abnormal trace metals in man: arsenic. J Chron Dis 19: 85–106.

    Article  PubMed  CAS  Google Scholar 

  • Shariatpanahi M, Anderson AC, Abdelghani AA (1981) Microbial demethylation of monosodium methanearsonate. In: Hemphill DD (ed) Trace Substances in Environmental Health-Part X. University of Missouri, Columbia, pp 383–387.

    Google Scholar 

  • Shiomi K, Shinagawa A, Igarashi T, Yamanaka H, Kikuchi T (1984) Evidence for the presence of arsenobetaine as a major arsenic compound in the Shrimp Sergestes lucens. Experientia 40: 1247–1248.

    Article  CAS  Google Scholar 

  • Silver S, Misra TK (1988) Plasmid-mediated heavy metal resistances. Ann Rev Microbiol 42: 717–743.

    Article  CAS  Google Scholar 

  • Silver S, Nakahara H (1983) Bacterial resistance to arsenic compounds. In: Lederer WH, Fensterheim RJ (eds) Arsenic: Industrial, Biomedical, Environmental Perspectives. Van Nostrand Reinhold, New York, pp 190–199.

    Google Scholar 

  • Smith HW (1978) Arsenic resistance in enterobacteria: its transmission by conjugation and by phage. J Gen Microbiol 109: 49–56.

    PubMed  CAS  Google Scholar 

  • Stauffer RE, Thompson JM (1984) Arsenic and antimony in geothermal waters of Yellowstone National Park, Wyoming, U.S.A. Geochim Cosmochim Acta 48: 2547–2561.

    Article  CAS  Google Scholar 

  • Stevens JT, Hall LL, Farmer JD, DiPasquale LC, Chernoff N, Durham WF (1977) Disposition of [14C] and/or [74As] cacodylic acid in rats after intravenous, intratracheal, or peroral administration. Environ Hlth Persp 19: 151–157.

    CAS  Google Scholar 

  • Vahter ME (1988) Arsenic. In: Clarkson TW, Friberg L, Nordberg GF, Sager PR (eds) Biological Monitoring of Toxic Metals. Plenum Press, New York, pp 303–321.

    Google Scholar 

  • Von Endt DW, Kearney PC, Kaufman DD (1968) Degradation of monosodium methanearsonic acid by soil microorganisms. J Agric Food Chem 16: 17–20.

    Article  Google Scholar 

  • Wakao N, Koyatsu H, Komai Y, Shimokawara H, Sakurai Y, Shiota H (1988) Microbial oxidation of arsenate and occurrence of arsenite-oxidizing bacteria in acid mine water from a sulfur-pyrite mine. Geomicrobiology J 6: 11–24.

    Article  CAS  Google Scholar 

  • Wauchope RD (1983) Uptake, translocation, and phytotoxicity of arsenic in plants. In: Lederer WH, Fensterheim RJ (eds) Arsenic: Industrial, Biomedical, Environmental Perspecitives. Van Nostrand Reinhold, New York, pp 348–377.

    Google Scholar 

  • Wong PTS, Chau YK, Luxon L, Bengert GA (1977) Methylation of arsenic in the aquatic environment. In: Hemphill DD (ed) Trace Substances in Environmental Health-Part X. University of Missouri, Columbia, pp 100–105.

    Google Scholar 

  • Woolson EA (1977) Generation of alkylarsines from soil. Weed Sci 25: 412–416.

    CAS  Google Scholar 

  • Woolson EA, Kearney PC (1973) Persistence and reactions of [14C] cacodylic acid in soils. Environ Sci technol 7: 47–50.

    Article  CAS  Google Scholar 

  • Wrench JJ, Addison RF (1981) Reduction, methylation and incororation of arsenic into lipids by the marine phytoplankton Dunaliella tertiolecta. Can J Fish Aquat Sci 38: 518–523.

    Article  CAS  Google Scholar 

  • Zingaro RA, Bottino NR (1983) Biochemistry: recent developments. In Lederer WH, Fensterheim RJ (eds) Arsenic: Industrial, Biomedical, Environmental Perspecitives. Van Nostrand Reinhold, New York, pp 327–347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Tamaki, S., Frankenberger, W.T. (1992). Environmental Biochemistry of Arsenic. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 124. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2864-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2864-6_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7700-2

  • Online ISBN: 978-1-4612-2864-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics