Advertisement

Soil and Fertilizer Phosphorus and Crop Responses in the Dryland Mediterranean Zone

  • A. Matar
  • J. Torrent
  • J. Ryan
Part of the Advances in Soil Science book series (SOIL, volume 18)

Abstract

As we approach the end of the century, the disparity between the rich and poor nations of the world is startling. While poverty knows no climatic or geographical boundary, a disproportionate number of the less well-off are concentrated in dryland or rainfed areas of the world. There, poverty has many bedfellows; low literacy levels, underemployment, small land holdings, limited and poor quality resources, and, consequently, low agricultural output. Because of over-stocking and poor grazing management, soil degradation is an inevitable consequence and one that undermines a country’s agricultural production capacity. This phenomenon is apparent in virtually all dryland areas of the world (Majeed, 1986). While soil degradation is evident in such places as diverse as Brazil and China, most countries of Africa are affected. Though the sub-Saharan Sahel has attracted attention because of disastrous famine in the past two decades, the North Africa region is just as much threatened. Indeed, the problem is common in West Asian countries as well. It is ironic that water, a scarce resource, which dictates the course of man’s fortunes in dryland areas, can also cause a depletion of the soil resource, if not managed properly.

Keywords

Faba Bean Calcareous Soil Phosphate Adsorption Crop Response Phosphate Sorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel Monem, M., A. Azzaoui, M. El Gharous, J. Ryan, and P. Soltanpour. 1990a. Residual nitrogen and phosphorus for dryland wheat in central Morocco, pp. 163–175. In: Ryan, J., Matar, A. (eds.) Proc. Third Regional Soil Test Calibration Workshop. ICARDA, Aleppo, Syria.Google Scholar
  2. Abdel Monem, M., J. Ryan, and M. El. Gharous, 1990b. Preliminary assessment of the soil fertility status of the mapped area of Chaouia. Al Awamia 72: 85–107.Google Scholar
  3. Abdel Monem, M., A. Azzaoui, M.E. Gharous, J. Ryan, and P. Soltanpour. 1990c. Fertilizer placement for dryland wheat in Central Morocco, pp. 149–162. In: Ryan, J., Matar, A. (eds.) Proc. Third Regional Soil Test Calibration Workshop. ICARDA, Aleppo, Syria.Google Scholar
  4. Abedi, M.J., and O. Talibudeen. 1974. The calcareous soils of Azerbaijan. I. Catena development related to the distribution and properties of soil carbonate. J. Soil Sci. 25: 357–372.CrossRefGoogle Scholar
  5. Abreu, M.M., and M. Robert. 1985. Characterization of maghemite in B horizons of three soils from southern Portugal. Geoderma 36: 97–108.CrossRefGoogle Scholar
  6. Abu Rub, N., and T.I. Ashab. 1987. Fertilization of wheat and barley under rainfed agriculture of Jordan, pp. 151–153. In: Soltanpour, P.N. (ed.) Proc. First Regional Soil Test Calibration Workshop. ICARDA, Aleppo, Syria.Google Scholar
  7. Adepoju, A.Y., P.F. Pratt, and S.V. Mattigod. 1986. Relationships between probable dominant phosphate compound in soil and phosphorus availability to plants. Plant Soil 92: 47–54.CrossRefGoogle Scholar
  8. Aggarwal, R.K., M.K. Sharma, and P. Raina. 1987. Phosphate adsorption characteristics of some Aridisols as affected by soil physicochemical properties. Indian J. Agric. Res. 21: 164–170.Google Scholar
  9. Ahmad, N., J.G. Davide, and T. Saleem. 1988. Fertility status of soils in dryland areas of Pakistan, pp. 22–49. Proc. Dryland Agric. Int. Seminar, Lahore, Pakistan, Nov. 6–8. FFC Fauji Fert.Google Scholar
  10. Agbani, M., and K. El Mejahed. 1983. Comparaison de methodes d’analyse du phosphore dans quelques sols marocains, pp. 249–261. Proc. Third Int. Cong. P Cpds., Inst. Mond. Phos. Casablanca, Morocco.Google Scholar
  11. Al-Khateeb, I.K., M.J. Raihan, and S.R. Asker. 1986. Phase equilibria and kinetics of orthophosphate in some Iraqi soils. Soil Sci. 141: 31–37.CrossRefGoogle Scholar
  12. Amar, B., and A. Ait Houssa. 1990. Comparison of different soil testing methods in various Mediterranean soils, pp. 61–52. In: Ryan, J., Matar, A. (eds.) Proc. Third Regional Soil Test Calibration Workshop. ICARDA, Aleppo, Syria.Google Scholar
  13. Amer, F., D.R. Bouldin, C.A. Black, and F.R. Duke. 1955. Characterization of soil phosphorus by anion exchangeable resin adsorption and 32P equilibration. Plant Soil 6: 391–408.CrossRefGoogle Scholar
  14. Amer, F.A., A.A. Mahmoud, and V. Sabet. 1985. Zeta potential and surface area of calcium carbonate as related to phosphorus sorption. Soil Sci. Soc. Am. J. 49: 1137–1142.CrossRefGoogle Scholar
  15. Arif, A., M. Abdel Monem, and J. Ryan. 1989. Impact of N and P fertilization of perennial grasses in Morocco. Agron. Abst., p. 298.Google Scholar
  16. Aslyng, H.C. 1954. The lime and phosphate potentials of soils; the solubility and availability of phosphates, pp. 1–50. Roy. Vet. Agric. Coll. Yearbook, Copenhagen, Denmark.Google Scholar
  17. Azzaoui, A., R.G. Hanson, and P.N. Soltanpour. 1989. Wheat P requirements on calcareous Moroccan soils. 1. A comparison of Olsen, Soltanpour, and CaCl2 soil tests. Commun. Soil Sci. Plant Anal. 20: 869–891.CrossRefGoogle Scholar
  18. Azzaoui, A., M. Abdel Monem, and J. Ryan. 1990. Phosphorus response of wheat, barley, and triticale in semi-arid conditions in Morocco. Agron. Abst., p. 97.Google Scholar
  19. Bache, B.W., and C. Ireland. 1980. Desorption of phosphate from soils using anion exchange resins. J. Soil Sci. 31: 297–306.CrossRefGoogle Scholar
  20. Badawy, F.M. 1976. Effect of phosphate fertilization and seed incubation with Okadun at high rate on yield of broad bean and lentil. Zentrablatt F. Bakteriologies, Parasiten kinde, Infektions Krankenkeit und Hygiene Zweite-Naturwissen Schaftliche Abteilung, 131: 655–670.Google Scholar
  21. Barber, S.A. 1980. Soil-plant interactions in the phosphorus nutrition of plants, pp. 591–615. In: Khasawneh, F.E., Sample, E.C., Kamprath, E.J. (eds.) The Role of Phosphorus in Agriculture. Soil Sci. Soc. Am., Madison, Wis.Google Scholar
  22. Barrón, V., M. Herruzo, and J. Torrent. 1988. Phosphate adsorption by aluminous hematites of different shapes. Soil Sci. Soc. Am. J. 52: 647–651.CrossRefGoogle Scholar
  23. Barrow, N.J. 1974. The slow reaction between soil and anions. I. Effect of time, temperature and water content on the decrease in effectiveness of phosphates for plant growth. Soil Sci. 118: 380–386.CrossRefGoogle Scholar
  24. Barrow, N.J. 1978. The description of phosphate adsorption curves. J. Soil Sci. 29: 447–462.CrossRefGoogle Scholar
  25. Barrow, N.J. 1980. Evaluation and utilization of residual phosphorus in soils, pp. 333–359. In: Stelly, M. (ed.) The Role of Phosphorus in Agriculture. Soil Sci. Soc. Am., Madison, Wis.Google Scholar
  26. Barrow, N.J. 1983. On the reversibility of phosphate sorption by soils. J. Soil Sci. 34: 751–758.CrossRefGoogle Scholar
  27. Barrow, N.J. 1987. Reactions with variable charge soils. Developments in Plant and Soil Sciences. Martinus Nijhoff, Dordrecht.Google Scholar
  28. Barshad, I. 1966. The effect of variation in precipitation on the nature of clay mineral formation in soils from acid and basic igneous rocks, Vol. 1, pp. 167–173. Proc. Int. Clay Conf. (Jerusalem).Google Scholar
  29. Bar-Yosef, B., U. Kafkafi, R. Rosenberg, and G. Sposito. 1988. Phosphorus adsorption by kaolinite and montmorillonite: I. Effect of time, ionic strength, and pH. Soil Sci. Soc. Am. J. 52: 1580–1585.CrossRefGoogle Scholar
  30. Bech, J., N. Fedoroff, P. Quantin, and P. Segalen. 1982. Etude des sols fersiallitiques lessivés formés sur des arènes granitiques de la Selva (Catalogne, Espagne). Cah. ORSTOM, sér. Pédol. 19: 233–256.Google Scholar
  31. Beek, J., and W.H. Van Riemsdijk. 1979. Interaction of orthophosphate ions with soil, pp. 259–284. Soil Chemistry. B. Physico-Chemical models. Developments in Soil Science. Elsevier Science, New York.Google Scholar
  32. Beinroth, F.H., G. Uehara, J.A. Silva, R.W. Arnold, and F.B. Cady. 1980. Agrotechnology transfer in the tropics based on soil taxonomy. Adv. Agron. 33: 304–339.Google Scholar
  33. Berigari, M.S., M.J. Raihan, and M.A. Umran. 1985. Phosphate adsorption isotherm for assessing phosphorus requirements of soils in Iraq. J. Agric. Water Resources Res. 4: 97–117.Google Scholar
  34. Boero, V., and U. Schwertmann. 1989. Iron oxide mineralogy of terra rossa and its genetic implications. Geoderma 44: 319–327.CrossRefGoogle Scholar
  35. Bohn, H.L., B.L. McNeal, and G.A. O’Connor. 1979. Soil Chemistry. Wiley, New York.Google Scholar
  36. Borggaard, O.K. 1983a. The influence of iron oxides on the surface area of soils. Soil Sci. 32: 427–432.Google Scholar
  37. Borggaard, O.K. 1983b. Effect of surface area and mineralogy of iron oxides on their surface charge and anion-adsorption properties. Clay Clay Miner. 31: 230–232.CrossRefGoogle Scholar
  38. Borrero, C., F. Pena, and J. Torrent. 1988. Phosphate sorption by calcium carbonate in some soils of the Mediterranean part of Spain. Geoderma 42: 261–269.CrossRefGoogle Scholar
  39. Bousselham, L. 1986. Niveau de carence en phosphore et le phosphore assimilable des sols de la region de Meknes. Bull. de l Ecole Nat. d’Agric. de Meknes. Morocco. 2: 23–29.Google Scholar
  40. Bowman, R.A., and S.R. Olsen. 1985. Assessment of phosphate buffering capacity: 2. Greenhouse methods. Soil Sci. 140: 387–392.CrossRefGoogle Scholar
  41. Bray, R.H. 1958. The correlation of a phosphorus soil test with the response of wheat through a modified Mitscherlich equation. Soil Sci. Soc. Am. Proc. 22: 314–337.CrossRefGoogle Scholar
  42. Brown, S.C., J.D.H. Keatinge, P.J. Gregory, and P.J.M. Cooper. 1987. Effects of fertilizer, variety and location on barley production under rainfed conditions in northern Syria. I. Root and shoot growth. Field Crops Res. 16: 53–66.CrossRefGoogle Scholar
  43. Chang, S.C., and M.L. Jackson. 1957. Fractionation of soil phosphorus. Soil Sci. 84: 133–144.CrossRefGoogle Scholar
  44. Chen, Y.S.R., J.N. Butler, and W. Stumm. 1973. Adsorption of phosphate on alumina and kaolinite from dilute aqueous solutions. J. Colloid Interface Sci. 43: 421–436.CrossRefGoogle Scholar
  45. Clawson, M., H.H. Landsberg, and L.S. Alexander. 1971. The agricultural potential of the Middle East. Elsevier Science, New York.Google Scholar
  46. Cole, C.V., S.R. Olsen, and C.O. Scott. 1953. The nature of phosphate sorption by calcium carbonate. Soil Sci. Soc. Am. Proc. 17: 352–356.CrossRefGoogle Scholar
  47. Cooper, P., M. Jones, H. Harris, and A. Matar. 1988. Agroecological constraints to crop production in West Asia and North Africa and their impact on fertilizer use. Workshop on Fertilizer Sector Development and Agricultural Production in Selected Countries of the Mediterranean, Middle East, and North Africa, May 1–14, Muscle Shoals, Al., USA.Google Scholar
  48. Cooper, P.J.M. 1983. Crop management in rainfed agriculture with special response to water use efficiency, pp. 63–81. Nutrient balances and the need for fertilizer in semi-arid and arid regions. Proc. 17th Colloq. Intl. Potash Inst., Rabat and Marrakech, Morocco.Google Scholar
  49. Cooper, P.J.M., P.J. Gregory, J.D.H. Keatinge, and S.C. Brown. 1987. Effects of fertilizer, variety, and location on barley production under rainfed conditions in northern Syria. 2. Soil water dynamics and crop water use. Field Crops Res. 16: 67–84.CrossRefGoogle Scholar
  50. Cyprus Agric. Res. Inst. 1963–1978. Annual Reports. Nicosia, Cyprus.Google Scholar
  51. Dalal, R.C. 1977. Soil organic phosphorus. Adv. Agron. 29: 83–117.CrossRefGoogle Scholar
  52. Dawood, F.A., and M.S. Murtathce. 1986. Effect of sulfur on the availability of phosphorus in calcareous soils, vol. 1., pp. 256–258. Proc. Sci. Conf., Sci. Res. Council, Bagdad, Iraq.Google Scholar
  53. Digdigoglu, A. 1980. A study on the calibration for some soil tests with barley response under Central Anatolia soil conditions. Ph.D. thesis, University of Ankara, Turkey, (in Turkish with English summary).Google Scholar
  54. Derkaoui, M., J. Ryan, and M. Abdel Monem. 1990. Field and greenhouse response of Moroccan medics (Medicago spp) to phosphorus. Agron. Abst., p. 111.Google Scholar
  55. Drees, L.R., and L.P. Wilding. 1987. Micromorphic record and interpretation of carbonate forms in the rolling plains of Texas. Geoderma 40: 157–175.CrossRefGoogle Scholar
  56. Dregne, H.E. 1976. Soils of Arid Regions. Elsevier Science, New York.Google Scholar
  57. Drouineau, G. 1942. Dossage rapide du calcaire actif du sol; nouvelles données sur la séparation et la nature des fractions calcaires. Ann. Agron. 12: 441–450.Google Scholar
  58. Eleizalde, B. 1976. Contributión al conocimiento del fósforo en algunos suelos de la Provincia de Zaragoza (España). An. Aula Dei 13: 451–480.Google Scholar
  59. Eleizalde, B. 1977. Distribución de fósforo total, orgânico e inorgánico en las fracciones granulométricas de los horizontes de cuatro grupos de suelos. ITEA 26: 2–14.Google Scholar
  60. Eleizalde, B. 1978. Adsorción de fósforo en los suelos aluviales de la Provincia de Zaragoza. ITEA 30: 25–34.Google Scholar
  61. Eleizalde, B. 1983. Influencia de las características químicas del suelo sobre el status del P en el Valle del Ebro. Agrochim. 27: 487–497.Google Scholar
  62. Eleizalde, B., and M. Fernández. 1982. Q/I ratio in saline soils belonging to Ebro Valley (Spain). Anal. Edaf. Agrob. 41: 271–281.Google Scholar
  63. El-Fakhry, A.K. 1980. Studies on dryland farming at the College of Agriculture and Forestry, University of Mosul, pp. 66–70. Proc. FAO Regional Seminar on Rainfed Agriculture in the Near East and North Africa. Food Agric. Organization, Rome, Italy.Google Scholar
  64. Elrashidi, M.A., A. Van Diest, and A.M. El Damaty. 1975. Phosphorus determination in highly calcareous soils by the use of anion exchange resin. Plant Soil 42: 273–286.CrossRefGoogle Scholar
  65. El-Zahaby, E.M., and S.H. Chien. 1982. Effect of small amounts of pyrophosphate on orthophosphate sorption by calcium carbonate as related to phosphate sorption. Soil Sci. Soc. Am. J. 46: 38–46.CrossRefGoogle Scholar
  66. FAO. 1970. Soils and fertilizers. Report Damascus Agric. Station Project ESR/SF/SYR 14 No. 1. FAO, Rome, Italy.Google Scholar
  67. FAO. 1979. Fertilizer Yearbook. FAO, Rome, Italy.Google Scholar
  68. FAO. 1980. Proc. Regional Seminar on Painfed Agriculture in the Near East and North Africa. FAO, Rome, Italy.Google Scholar
  69. FAO. 1984. Food Balance Sheets, 1979–81 Average. FAO, Rome, Italy.Google Scholar
  70. FAO. 1989. Fertilizer Yearbook. FAO, Rome, Italy.Google Scholar
  71. Fixen, P.E., A.E. Ludwick, and S.R. Olsen. 1983. Phosphorus and potassium fertilization of irrigated alfalfa in calcareous soils. II. Soil phosphorus solubility relationships. Soil Sci. Soc. Am. J. 47: 112–117.CrossRefGoogle Scholar
  72. Freeman, J.S., and D.L. Rowell. 1981. The adsorption and precipitation of phosphate onto calcite. J. Soil Sci. 32: 75–84.CrossRefGoogle Scholar
  73. Gachon, L. 1966. Phosphore isotopiquement diluable et pouvoir fixateur des sols en relation avec la croissance des plantes. C.R. Acad. Agric. France 52: 1108–116.Google Scholar
  74. Gal, M., A.J. Amiel, and S. Ravikovitch. 1974. Clay mineral distribution and origin in the soil types of Israel. J. Soil Sci. 25: 79–89.CrossRefGoogle Scholar
  75. Gharbi, A., L. Ettounsi, and A. Haddad. 1990. Soil test calibration for wheat cropped under Tunisian rainfed conditions, pp. 83–90. In: Ryan, J., Matar, A. (eds.) Proc. Third Regional Soil Test Calibration Workshop. ICARDA, Aleppo, Syria.Google Scholar
  76. Goldberg, S., and G. Sposito. 1984. A chemical model of phosphate adsorption by soils. II. Non-calcareous soils. Soil Sci. Soc. Am. J. 48: 779–783.CrossRefGoogle Scholar
  77. Gradusov, B.P. 1974. A tentative study of clay mineral distribution in soils of the world. Geoderma 12: 49–55.CrossRefGoogle Scholar
  78. Gregory, P.J., K.D. Shepherd, and P.J. Cooper. 1986. Effects of fertilizer on root growth and water use of barley in northern Syria. J. Agric. Sci. 103: 429–438.CrossRefGoogle Scholar
  79. Griffin, R.A., and J.J. Jurinak. 1973. The interaction of phosphate with calcite. Soil Sci. Soc. Am. Proc. 37: 847–850.CrossRefGoogle Scholar
  80. Haddad, N. 1986a. Recommendations for growing lentil in Jordan. Agric. Ext. Bull. No 3. Min. Agric, Amman, Jordan, (in Arabic).Google Scholar
  81. Haddad, N. 1986b. Recommendations for growing chickpea in Jordan. Agric. Ext. Bull. No 4. Min. Agric, Amman, Jordan, (in Arabic).Google Scholar
  82. Hagin, J., and B. Tucker. 1982. Fertilization of Dryland and Irrigated Soils. Springer-Verlag, New York.Google Scholar
  83. Harmsen, K., K.D. Shepherd, and A.Y. Allan. 1983. Crop reponse to nitrogen and phosphorus in rainfed agriculture, pp. 223–249. Nutrient balances and the need for fertilizers in semi-arid and arid-regions. Proc 17th Colloq. Intl. Potash Inst., Rabat and Marrakech, Morocco.Google Scholar
  84. Hassan, N., F. Aziz, T. Al-Tamimi, S. Asker, and E. Rabban. 1974. Limits of phosphorus availability in representative Iraqi soils as measured by crop response and soil test values. Inst. Appl. Res. Nat. Res. Tech. Bull. No. 74. Sci. Res. Found., Baghdad, Iraq.Google Scholar
  85. Hasan, H. 1980. Absorption and transformation of phosphorus in calcareous Lebanese soils. M.S. thesis, American University, Beirut, Lebanon.Google Scholar
  86. Havlin, J.L., and D.G. Westfall. 1984. Soil test phosphorus and solubility relationships in calcareous soils. Soil Sci. Soc. Am. J. 48: 327–330.CrossRefGoogle Scholar
  87. Hernando, V., V. Lombardía, and R. de Clerk. 1968. Relación entre el pH, la materia orgánica y las formas de fósforo en tres catenas de suelos. Anal. Edaf. Agrob. 27: 779–816.Google Scholar
  88. Holford, I.C.R. 1988. Buffering of phosphate in the soil solution during growth of ryegrass compared with buffering in soil solution. Plant Soil 111: 3–9.CrossRefGoogle Scholar
  89. Holford, I.C.R., and G.E.G. Mattingly. 1975a. Surface areas of calcium carbonate in soils. Geoderma 13: 247–255.CrossRefGoogle Scholar
  90. Holford, I.C.R., and G.E.G. Mattingly. 1975b. The high-and low-energy phosphate adsorption surfaces in calcareous soils. J. Soil Sci. 26: 407–417.CrossRefGoogle Scholar
  91. Hooker, M.L., G.A. Peterson, D.H. Sander, and L.A. Daigger. 1980. Phosphate fractions in calcareous soils as altered by time and amounts of added phosphate. Soil Sci. Soc. Am. J. 44: 269–277.CrossRefGoogle Scholar
  92. Hundal, H.S. 1988. A mechanism of phosphate adsorption on Narrabi medium clay loam soil. J. Agric. Sci. 111: 155–158.CrossRefGoogle Scholar
  93. ICARDA. Annual Reports, 1983–1988. ICARDA, Aleppo, Syria.Google Scholar
  94. ICARDA, Soils Directorate, and Syrian Min. Agric 1989. Collaborative Research Project Report on Fertilizer Use on Wheat in Northern Syria 1986–88. ICARDA, Aleppo, Syria.Google Scholar
  95. Itoh, S. 1987. Characteristics of phosphorus uptake of chickpea in comparison with pigeon pea, soybean, and maize. Soil Sci. Plant Nutr. 33: 417–422.Google Scholar
  96. Jackson, T.L., A.D. Halvorson, and B.B. Tucker. 1983. Soil fertility in dryland agriculture, pp. 299–332. In: Dregne, H.E., Willis, W.O. (eds.) Dryland Agriculture. Agron 23. Amer. Soc. Agron., Madison, Wis.Google Scholar
  97. Jones, M., and A. Matar. 1990. A note on the effect of regular fertilizer use within different two-year cropping rotations on soil phosphate and organic matter status, pp. 211–220. In: Ryan, J., Matar, A. (eds.) Proc. Third Regional Soil Test Calibration Workshop. ICARDA, Aleppo, Syria.Google Scholar
  98. Joret, G., and J. Hebert. 1955. Contribution a la determination du besoin des sols en acide phosphorique. Ann. Agron., pp. 233–299.Google Scholar
  99. Kacar, B. 1967. A study of phosphorus fixation in some Turkish soils, and the factors affecting fixation. Ankara Univ. Zir. Fak. Yill 17: 215–234.Google Scholar
  100. Kacar, B. 1969. Phosphorus fractionation and correlation of phosphorus fractions with phosphorus availability by various tests in Cukurova soils, pp. 85–88. Univ. Ankara Yearbook, Fac. Agric., Ankara, Turkey.Google Scholar
  101. Kacar, B. 1972. A study of the residual effects of phosphorus fertilizer, pp. 207–232. Univ. Ankara Yearbook, Fac. Agric, Ankara, Turkey.Google Scholar
  102. Kacar, B., F. Didehvar, and E. Shokravi. 1967. Evaluation of various methods for the estimation of plant available phosphorus in the soils of Caspian Sea, pp. 140–150. Univ. Ankara Yearbook, Fac. Agric, Ankara, Turkey.Google Scholar
  103. Kafkafi, U., A.M. Posner, and J.P. Quirk. 1967. The desorption of phosphate from kaolinite. Soil Sci. Soc. Am. Proc. 31: 348–353.CrossRefGoogle Scholar
  104. Karim, M.I., M.S. Berigari, F.M.S. al-Any, and L.H. Ibrahini. 1989. Effect of citric, tartaric and oxalic acids on phosphate sorption by some calcareous soils of Iraq. J. Agric. Resources Res. 8: 51–67.Google Scholar
  105. Kassam, A.H. 1981. Climate, soil and land resources in North Africa and West Asia. Plant Soil 58: 1–28.CrossRefGoogle Scholar
  106. Kaushansky, P., S. Levin, and A.J. Amiel. 1984. The precipitation of calcium oxalate on carbonate mineral surfaces. Soil Sci. 138: 397–402.CrossRefGoogle Scholar
  107. Keatinge, J.D.H., M.D. Dennett, and J. Rodgers. 1986. The influence of precipitation regime on the crop management of dry areas in northern Syria. Field Crops Res. 13: 239–249.CrossRefGoogle Scholar
  108. Khader, S., and T. Abu Sharar. 1979. Phosphorus adsorption isotherm by a Jordanian soil. Dirasat. 6: 139–151.Google Scholar
  109. Kishk, M.A., and A.Y. Lashin. 1978. Phosphate retention by soils and its relation to soil properties. Beiträge zur Tropischen Landwirtschaft und Veterinärmedizin 16: 145–153.Google Scholar
  110. Khuri, N., A.T. Shammas, and J. Ryan. 1987. Greenhouse evaluation of Beirut municipal compost. Leb. Sci. Bull. 3: 53–63.Google Scholar
  111. Krentos, V.D., and P.I. Orphanos. 1979. Nitrogen and phosphorus fertilizers for wheat and barley in a semi-arid region. J. Agric. Sci. 93: 711–717.CrossRefGoogle Scholar
  112. Lajtha, K., and S.H. Bloomer. 1988. Factors affecting phosphate sorption and phosphate retention in a desert ecosystem. Soil Sci. 146: 160–167.CrossRefGoogle Scholar
  113. Larsen, S., D. Gunary, and C.D. Sutton. 1965. The rate of immobilization of applied phosphate in relation to soil properties. Soil Sci. 16: 141–148.CrossRefGoogle Scholar
  114. Larsen, S. 1967. Soil phosphorus. Adv. Agron. 19: 151–210.CrossRefGoogle Scholar
  115. Lindsay, W.L. 1979. Chemical Equilibria in Soils. Wiley, New York.Google Scholar
  116. Lindsay, W.L., and P.L.G. Vlek. 1979. Phosphate Minerals, pp. 639–672. In: Dixon, J.B., Weed S.B. (ed.) Minerals in Soil Environments. Soil Sci. Soc. Am., Madison, Wis.Google Scholar
  117. Lins, I.D.G., F.R. Cox, and J.J. Nicholaides III. 1985. Optimizing fertilization rates for soybean grown on Oxisols and associated Entisols. Soil Sci. Soc. Am. J. 49: 1457–1460.CrossRefGoogle Scholar
  118. Loizides, P. 1970. Experiments with dryland rotation in the Syrian Arab Republic. Soils Fert. Report Damascus Agric. Station Project ESR/SF/SYR, 14 (1). FAO, Rome, Italy.Google Scholar
  119. Loizides, P. 1980. Crop rotations under rainfed conditions in a Mediterranean climate in relation to soil moisture and fertilizer requirements, pp. 23–38. Proc. FAO regional seminar on Rainfed Agriculture in the Near East and North Africa. FAO, Rome, Italy.Google Scholar
  120. Luque, T., and P. de Arambarri. 1983. Dinamica del fośforo en los suelos de las marismas del Guadalquivir. Anal. Edaf. Agrob. 42: 1723–1735.Google Scholar
  121. Macías Vázquez, F. 1981. Formation of gibbsite in soils and saprolites of temperate-humid zones. Clay Miner. 16: 43–52.CrossRefGoogle Scholar
  122. Madrid, L., and P. de Arambarri. 1985. Adsorption of phosphate by two iron oxides in relation to their porosity. J. Soil Sci. 36: 523–530.CrossRefGoogle Scholar
  123. Majeed, Y.A. 1986. Anti-desertification technology and management. United Nations Environ. Prog., Nairobi, Kenya.Google Scholar
  124. Martin, R.R., R. St. C. Smart, and K. Tazaki. 1988. Direct observation of phosphate precipitation in the goethite/phosphate system. Soil Sci. Soc. Am. J. 52: 1492–1500.CrossRefGoogle Scholar
  125. Matar, A. 1976a. Direct and cumulative effects of phosphates in calcareous soils under dry farming agriculture of southern Syria. ACSAD, Damascus, Syria.Google Scholar
  126. Matar, A. 1976b. Correlation between NaHCO3-extractable P in soil and yield of wheat and lentil grown under dry farming conditions. ACSAD, Damascus, Syria.Google Scholar
  127. Matar, A.E. 1977. Yields and response of cereal crops to phosphorus fertilization under changing rainfall conditions. Agron. J. 69: 879–881.CrossRefGoogle Scholar
  128. Matar, A.E. 1990. A descriptive model for prediction of residual phosphorus in soil after phosphate fertilization, pp. 29–60. In: Ryan, J., Matar, A. (eds.) Proc. Third Regional Soil Test Calibration Workshop. ICARDA, Aleppo, Syria.Google Scholar
  129. Matar, A.E., and S.C. Brown. 1989a. Effect of rate and method of phosphate placement on productivity of durum wheat in Mediterranean environments. I. Crop yields and P uptake. Fert. Res. 20: 75–82.CrossRefGoogle Scholar
  130. Matar, A.E., and S.C. Brown. 1989b. Effect of rate and method of phosphate placement on productivity of durum wheat in a Mediterranean climate. II. Root distribution and P dynamics. Fert. Res. 20: 83–88.CrossRefGoogle Scholar
  131. Matar, A.E., M. Saxena, and S.N. Silim. 1988a. Soil testing as a guide to phosphate fertilization of five legumes in Syria, pp. 94–103. In: Matar, A.E., Soltanpour, P.N., Chouinard, A. (eds.) Proc. Second Regional Soil Test Calibration Workshop. ICARDA, Aleppo, Syria.Google Scholar
  132. Matar, A.E., S. Garabet, S. Riahi, and A. Mazid. 1988b. A comparison of four soil test procedures for determination of available phosphorus in calcareous soils of the Mediterranean region. Commun. Soil Sci. Plant Anal. 19: 127–140.CrossRefGoogle Scholar
  133. Matar, A.E., J. Abdel Karim, and K. El Hajj. 1987. Studies on response of cereals and food legumes to phosphate fertilization in Syria as related to available P in soils, pp. 133–151. In: Soltanpour, P.N. (ed.) Proc. First Regional. Soil Test Calibration Workshop. ICARDA, Aleppo, Syria.Google Scholar
  134. Matar, A.E., E. Jabbour, and K. El Hajj. 1988c. Prediction of barley response to fertilizers by means of soil nitrogen and phosphorus tests, pp. 12–23. In: Matar, A.E., Soltanpour, P.N., Chouinard, A. (eds.) Proc. Second Regional Soil Test Calibration Workshop. ICARDA, Aleppo, Syria.Google Scholar
  135. Matar, A.E., P.N. Soltanpour, and A. Chouinard. 1988d. Proc. Second Regional Soil Test Calibration Workshop. ICARDA, Aleppo, Syria.Google Scholar
  136. Mattingly, C.E.G. 1971. Residual value of phosphorus fertilizer on neutral and calcareous soils, pp. 1–15. Residual value of applied nutrients. Tech Bull. 20., Min. Agric., Fish, Food, London.Google Scholar
  137. Mehlich, A. 1984. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15: 1409–1416.CrossRefGoogle Scholar
  138. Mehra, O.P., and M.L. Jackson. 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate, pp. 317–327. In: Swineford, A. (ed.) Clays and Clay Minerals, Proc. 7th Natl. Conf. Pergamon Press, New York.Google Scholar
  139. Meixner, R.E., and M.J. Singer. 1985. Phosphorus fractions from a chronosequence of alluvial soils, San Joaquin Valley, California. Soil Sci. 139: 37–46.CrossRefGoogle Scholar
  140. Mergoum, M., J. Ryan, and M. Abdel Monem. 1990. Response of high-yielding triticale to N and P in a rainfed Mollisol and Vertisol in Morocco. Agron. Abst., p. 80.Google Scholar
  141. Michel, C., A. Oudghiri, and A. Dardari. 1967. Diagnosis of mineral deficiencies of Moroccan soil in pot culture. Al Awamia 23: 1–58.Google Scholar
  142. Michel, C., and A. Bouzoubaa. 1980. Premiers resultats des essais de fumure de redressement phosphate au Maroc. Al Awamia 60: 45–64.Google Scholar
  143. Millot, G. 1970. Geology of Clays. Springer-Verlag, New York.Google Scholar
  144. Millot, G., H. Paquet, and A. Ruellan. 1969. Néoformation de l’attapulgite dans les sols à caparaces calcaires de la Basse Moulouja (Maroc Oriental). C.R. Acad. Sci. Paris 268: 2271–2274.Google Scholar
  145. Moore, D. 1974. Soil fertility research on wheat: Jordan wheat research and production. Final Report. Min. Agric, Amman, Jordan.Google Scholar
  146. Moore, T.J., R.C. Hartwig, and R.H. Loeppert. 1990. Steady-state procedure for determining the effective particle-size distribution of soil carbonates. Soil Sci. Soc. Am. J. 54: 55–59.CrossRefGoogle Scholar
  147. Moreno, E.C., W.L. Lindsay, and G. Osborn. 1960. Reactions of dicalcium phosphate dihydrate in soils. Soil Sci. 90: 58–68.CrossRefGoogle Scholar
  148. Muljadi, D., A.M. Posner, and J.P. Quirk. 1966. The mechanism of phosphate adsorption by kaolinite, gibbsite and pseudoboehmite. Part I. The isotherms and the effect of pH on adsorption. J. Soil Sci. 17: 212–229.CrossRefGoogle Scholar
  149. Nat. Cent. Agric. Res. Tech. Trans. (NCARTT). 1975–1984. Annual Reports. Min. Agric, Amman, Jordan.Google Scholar
  150. Nakos, G. 1987. Phosphorus adsorption by forest soils. Commun. Soil Sci. Plant Anal. 18: 279–286.CrossRefGoogle Scholar
  151. Nettleton, W.D., K.W. Flach, and R.E. Nelson. 1970. Pedogenic weathering of tonalite in southern California. Geoderma 4: 387–401.CrossRefGoogle Scholar
  152. Novais, R., and E.J. Kamprath. 1978. Phosphorus supplying capacities of previously heavily fertilized soils. Soil Sci. Soc. Am. J. 42: 931–934.CrossRefGoogle Scholar
  153. Nychas, E., and C.S. Kosmas. 1984. Phosphate adsorption by dark alkaline Vertisols in Greece. Geoderma 32: 319–327.CrossRefGoogle Scholar
  154. Olsen, S.R., C.V. Cole, F.S. Watanabe, and L.A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ. No 939, Washington, D.C.Google Scholar
  155. Olsen, S.R., F.S. Watanabe, and R.E. Danielson. 1961. Phosphorus absorption by corn roots as affected by moisture and phosphorus concentration. Soil Sci. Soc. Am. Proc. 25: 282–294.CrossRefGoogle Scholar
  156. Olsen, S.R., and A.D. Flowerday. 1971. Fertilizer phosphorus interactions in alkaline soils, pp. 153–185. In: Olsen, R.A., Army, T.J., Hanway, J.J., Kilmer, V.J. (eds.) Fertilizer Technology and Use. Soil Sci. Soc. Am., Madison, Wis.Google Scholar
  157. Oskay, K.S. 1986. The influence of time on phosphate retention and the description of P adsorption by means of the Langmuir isotherms in calcareous soils. Doga, Türk Tarimve Ormancilic Dergisi 10: 252–262.Google Scholar
  158. Orphanos, P.I. 1987. Response to fertilizer phosphorus by barley under varying rainfall and available soil phosphorus, pp. 115–131. In: Soltanpour, P.N. (ed.) Proc. First Regional Soil Test Calibration Workshop. ICARDA, Aleppo, Syria.Google Scholar
  159. Orphanos, P.I. 1988. Direct and residual effect of fertilizer phosphorus on barley in Cyprus, p. 44–49. In: Matar, A.E., Soltanpour, P.N., Chouniard, A. (eds.) Proc. Second Regional. Soil Test Calibration Workshop. ICARDA, Aleppo, Syria.Google Scholar
  160. Orphanos, P.I., and Krentos. 1980. Concentration of N, P and K in leaves; straw and grain of wheat and barley as influenced by N and P fertilizers under semi-arid conditions. J. Agric Sci. 94: 551–556.CrossRefGoogle Scholar
  161. Osman, A., F. Russi, M. Pagnota, and P. Cocks. 1991. Response to phosphate application by Mediterranean grasslands grazed at two stocking rates, biomass production, and change in botanical composition. J. Appl. Ecol. (in press).Google Scholar
  162. Ozanne, P.G. 1980. Phosphate mutrition of plants—a general treatise, pp. 559–589. In: Khasawneh, F.E., Sample, E.C., Kamprath, E.J. (eds.) The Role of Phosphorus in Agriculture. Soil Sci. Soc. Am., Madison, Wis.Google Scholar
  163. Parfitt, R.L. 1978. Anion adsorption by soil and soil materials. Adv. Agron. 30: 1–50.CrossRefGoogle Scholar
  164. Parfitt, R.L. 1989. Phosphate reactions with natural allophane, ferrihydrite and goethite. J. Soil Sci. 40: 359–369.CrossRefGoogle Scholar
  165. Paris, P. 1986. Fertilizers and yield improvement in Mediterranean Italy. Fert. Agric. 92: 13–37.Google Scholar
  166. Parra, M.A., J. Torrent, J. Barrios, and L. Montealegre. 1983. Balances mineralógicos y texturales en la formatión de suelos de toposecuencias típicas de la parte central del Valle de los Pedroches (Córdoba). Anal. Edaf. Agrob. 42: 945–954.Google Scholar
  167. Pavel, L., and G. Toma. 1972. Adsorption of phosphate anions in Iraqi soils. Sbornik Visoké Skoly Zemedelské v Praze. Fakulta Agronomická A(2): 53–64.Google Scholar
  168. Peña, F. 1990. Influencia de diversos factores mineralögicos en la adsorción de fosfato en suelos de areas mediterráneas. Ph.D. thesis, Univ. Córdoba, Spain.Google Scholar
  169. Peña, F., and J. Torrent. 1984. Relationship between phosphate sorption and iron oxides in alfisols from a river terrace sequence of Med, terranean Spain. Geoderma 33: 283–296.CrossRefGoogle Scholar
  170. Pissarides, A., J.W.B. Stewart, and D.A. Rennie. 1968. Influence of cation saturation on phosphorus adsorption by selected clay minerals. Can. J. Soil Sci. 48: 151–157.CrossRefGoogle Scholar
  171. Rashid, N., N. Bughio, and M. Salim. 1988. Calibration of three soil tests for determining phosphorus fertility of soils to support cereals, legumes and oilseeds, pp. 86–94. In: Matar, A.E., Soltanpour, P.N., Chouniard, A. (eds.) Proc. Second Regional Soil Test Calibration Workshop. ICARDA, Aleppo, Syria.Google Scholar
  172. Rashid, A., F. Hussain, G. Ahmad, and M. Salim. 1990. Use of a universal soil test and plant analysis for diagnosing P deficiency in rainfed wheat, pp. 98–110. In: Ryan, J., Matar, A. (eds.) Proc. Third Regional Soil Test Calibration Workshop. ICARDA, Aleppo Syria.Google Scholar
  173. Rice, W.A., M.E. Akhtar, Y. Rohul Amin, and J.A. Campbell. 1990. Wheat responses to nitrogen and phosphorus in rainfed areas of Pakistan, pp. 66–75. In: Ryan, J., Matar, A. (eds.) Proc. Third Regional Soil Test Calibration Workshop. ICARDA, Aleppo, Syria.Google Scholar
  174. Rich, C.I. 1968. Hydroxy interlayers in expansible layer silicates. Clays Clay Miner. 16: 15–30.CrossRefGoogle Scholar
  175. Roca, J., and F. Pomares. 1987. Movilidad y transformaciones en el suelo del fertilizante fosforado aplicado en un ensayo de campo en cítricos sometido a no laboreo. Invest. Agr.: Prod. Prot. Veg. 2: 237–242.Google Scholar
  176. Russell, J.S., E.J. Kamprath, and C.S. Andrew. 1988. Phosphorus sorption of subtropical acid soils as influenced by the nature of the cation suite. Soil Sci. Soc. Am. J. 52: 1407–1410.CrossRefGoogle Scholar
  177. Ryan J. 1983. Phosphorus in soils of arid regions. Geoderma 19: 341–356.CrossRefGoogle Scholar
  178. Ryan, J. 1990. Soil and fertilizer studies in Lebanon, pp. 6–28. In: Ryan, J., Matar, A. (eds.) Proc. Third Regional Soil Test Calibration Workshop. ICARDA, Aleppo, Syria.Google Scholar
  179. Ryan, J., and M. Alem Zghard. 1980. Phosphorus transformations with age in a calcareous soil chronosequence. Soil Sci. Soc. Am. J. 44: 168–169.CrossRefGoogle Scholar
  180. Ryan, J., G. Musharrafieh, and A. Barsumian. 1980. Soil fertility characterization of the Agricultural Education and Research Center of the American University of Beirut. FAFS Bull. No. 64. Amer. Univ. Beirut, Lebanon.Google Scholar
  181. Ryan, J., and A.G. Ayubi. 1981. Phosphorus availability indices in calcareous Lebanese soils. Plant Soil 62: 141–145.CrossRefGoogle Scholar
  182. Ryan, J., D. Curtin, and M.A. Cheema. 1985a. Significance of iron oxides and calcium carbonate particle size in phosphate sorption by calcareous soils. Soil Sci. Soc. Am. J. 49: 74–76.CrossRefGoogle Scholar
  183. Ryan, J., H.M. Hasan, M. Baasiri, and H.S. Tabbara. 1985b. Availability and transformation of applied phosphorus in calcareous Lebanese soils. Soil Sci. Soc. Am. J. 49: 1215–1220.CrossRefGoogle Scholar
  184. Ryan, J., R. Shwayri, and S.N. Hariq. 1985c. Short-term evaluation of nonconventional organic wastes. Agric. Wastes 12: 241–249.CrossRefGoogle Scholar
  185. Ryan, J., and H. Tabbara. 1989. Influence of urea phosphate on infiltration and sodium parameters of a calcareous sodic soil. Soil Sci. Soc. Am. J. 53: 1531–1536.CrossRefGoogle Scholar
  186. Ryan, J., and A. Matar. (eds.) 1990. Proc. Third Regional Soil Test Calibration Workshop. ICARDA, Aleppo, Syria.Google Scholar
  187. Ryan, J., M. Abdel Monem, and M. El Gharous. 1990. Soil fertility assessment at agricultural experiment stations in Chaouia, Abda, and Doukkala. Al Awamia 72: 1–47.Google Scholar
  188. Ryan, J., and M. Abdel Monem. 1991. Implications of spatial variability for soil sampling and fertilizer use. Proc. Fourth Regional Soil Test Calibration Workshop, May 5–11, Agadir, Morocco. ICARDA, Aleppo, Syria.Google Scholar
  189. Ryan, J., M. Abdel Monem, and M. Mergoum. 1991a. Responses of triticale varieties to N and P in semi-arid Morocco. Al Awamia (in press).Google Scholar
  190. Ryan, J., M. Abdel Monem, M. Dafir, M. Mergoum, and S. Belaid. 1991b. Response of local and improved corn varieties in Morocco to phosphorus and zinc. Al Awamia (in press).Google Scholar
  191. Ryan, J., M. Abdel Monem, M. Mergoum and D. Haderbach. 1991c. Impact of phosphorus fertilization on barley, wheat, and triticale in Morocco’s dryland zone. Al Awamia (in press).Google Scholar
  192. Ryan, J., M. Abdel Monem, and J.P. Shroyer. 1992. Visual assessment of nitrogen deficiency in dryland cereals: a basis for action in Morocco. J. Agron. Educ. (in press).Google Scholar
  193. Saad, H.S., A. Bamatraf, and A. Haidra. 1990. Wheat response to soil P content in the Central Highlands of Yemen, pp. 91–97. In: Ryan, J., Matar, A. (eds.). Proc. Third Regional Soil Test Calibration Workshop. ICARDA, Aleppo, Syria.Google Scholar
  194. Sabbe, W., and D.B. Marx. 1987. Soil sampling: spatial and temporal variability, pp. 1–14. In: Brown, J.R. (ed.) Soil Testing: Sampling, Correlation, Calibration, and Interpretation. Spec. Publ. 21. Soil Soc. Am., Madison, Wis.Google Scholar
  195. Sample, E.C., R.J. Soper, and G.C. Racz. 1980. Reaction of phosphate fertilizers in soils, pp. 263–310. In: Stelly, M. (ed.) The Role of Phosphorus in Agriculture. Soil Sci. Soc. Am., Madison, Wis.Google Scholar
  196. Santa Cruz, F., M.C. Bolarín, M. Caro, and M. Romero. 1981. Adsorción de fosfato en suelos calizos. II. Correlaciones entre parámetras de adsorción y algunas características del suelo. Anal. Edaf. Agrob. 40: 601–608.Google Scholar
  197. Santa Cruz, F., M.C. Bolarín, M. Romero, and F.G. Fernandez. 1982. Adsorción de fosfato por minerales de la arcilla. Anal Edaf. Agrob. 41: 2235–2243.Google Scholar
  198. Saxena, N.P. 1984. Chickpea, pp. 491–452. In: Goldsworthy, P., Fisher, T. (eds.) The Physiology of Tropical Field Crops. Wiley, Chichester, U.K.Google Scholar
  199. Sayegh, A.H., and A.A. Majid. 1969. Phosphorus fractionation and retention in alkaline Lebanese soils. Agrochim. 13: 265–276.Google Scholar
  200. Schulze, D.G. 1981. Identification of soil iron oxide minerals by differential X-ray diffraction. Soil Sci. Soc. Am. J. 45: 437–440.CrossRefGoogle Scholar
  201. Schulze, D.G. 1988. Separation and concentration of iron-containing phases, pp. 63–81. In: Stucki, J.W., Goodman, B.A., Schwertmann, U. (eds.) Iron in Soils and Clay Minerals. Reidel, Dordrecht.Google Scholar
  202. Schwertmann, U. 1964. Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat Lösung. Z. Pflanzenernähr. Düng. Bodenk. 105: 194–202.CrossRefGoogle Scholar
  203. Schwertmann, U. 1985. The effect of pedogenic environments on iron oxide minerals. Adv. Soil Sci. 1: 171–200.Google Scholar
  204. Seklani, H. 1983. Essais de fertilisation phosphatée en vue d’une amelioration pastorale sur des terres marginales des étages humide et semi-aride de la Tunisie, pp. 375–387. Proc. Third Intl. Cong. P Cpds. Inst. Mond. Phos. Casablanca, Morocco.Google Scholar
  205. Sharar, M.S., M.A. Gill, and A.A. Shafqat. 1976. Lentil yield and quality as influenced by irrigation and fertilizer levels. Pak. J. Agric. Sci. 13: 231–234.Google Scholar
  206. Shaviv, A., N. Shachar, and J. Hagin. 1989. Kinetics of phosphorus reactions in calcareous soils. Commun. Soil. Sci. Plant Anal. 20: 465–482.CrossRefGoogle Scholar
  207. Shepherd, K., P.J.M. Cooper, A. Allan, D. Drennan, and J.D.H. Keatinge. 1987. Growth, use and yield of barley in Mediterranean-type environments. J. Agric. Sci. 108: 365–378.CrossRefGoogle Scholar
  208. Shroyer, J.P., J. Ryan, M. Abdel Monem, and M. El Mourid. 1990. Production of fall-planted wheat in Morocco and technology of its improvement. J. Agron. Educ. 19: 32–60.Google Scholar
  209. Sibbensen, E. 1978. An evaluation of the anion-exchange resin method for soil phosphate extraction. Plant Soil. 50: 305–321.CrossRefGoogle Scholar
  210. Singer, A. 1978. Phosphorus retention in some basalt and tuff-derived Mediterranean soils. Agrochim. 22: 75–82.Google Scholar
  211. Solís, P. 1988. Dinámica del fósforo en suelos de campinas andaluzas. Ph.D. thesis, Univ. Córdoba, Spain.Google Scholar
  212. Solís, P., and J. Torrent. 1989a. Phosphate fractions in calcareous Vertisols and Inceptisols of Spain. Soil Sci. Soc. Am. J. 53: 462–466.CrossRefGoogle Scholar
  213. Solís, P., and J. Torrent. 1989b. Phosphate sorption by calcareous Vertisols and Inceptisols of Spain. Soil Sci. Soc. Am. J. 53: 456–459.CrossRefGoogle Scholar
  214. Soltanpour, P.N. 1985. Use of ammonium bicarbonate—DTPA soil test to evaluate elemental use availability and toxicity. Commun. Soil Sci. Plant Anal. 16: 323–338.CrossRefGoogle Scholar
  215. Soltanpour, P.N. (ed.). 1987. Proc. First Regional Soil Test Calibration Workshop. ICARDA, Aleppo, Syria, and Mid Amer. Agric. Cons., Settat, Morocco.Google Scholar
  216. Soltanpour, P.N., M. El Gharous, A. Azzaoui, and M. Abdel Monem. 1988. Nitrogen and phosphorus soil test calibration studies in the Chaouia region of Morocco, pp. 67–81. In: Matar, A.E., Soltanpour, P.N., Chouinard, A. (eds.) Proc. Second Regional Soil Test Calibration Workshop. ICARDA, Aleppo, Syria.Google Scholar
  217. Soltanpour, P.N., M. El Gharous, A. Azzaoui, and M. Abdel Monem. 1989. Response of dryland wheat to P rates and placement methods. Commun. Soil Sci. Plant Anal. 20: 597–605.CrossRefGoogle Scholar
  218. Steiner, J.L., J.C. Day, R.I. Papendick, R.E. Meyer, and A.R. Bertrand. 1988. Improving and sustaining productivity in dryland regions of developing countries. Adv. Soil Sci. 8: 79–122.Google Scholar
  219. Stumm, W., and J.O. Leckie. 1971. Phosphate exchange with sediments: its role in the productivity of surface waters. Proc. 5th Int. Water Pollution Res. Conf., San Francisco.Google Scholar
  220. Syers, J.K., G.W. Smillie, and J.D.H. Williams. 1972. Calcium fluoride formation during extraction of calcareous soils with fluoride: I. Implications to inorganic phosphorus fractionation schemes. Soil Sci. Soc. Am. Proc. 36: 20–24.CrossRefGoogle Scholar
  221. Syrian Min. Agric./ICARDA. 1985–1988. Collaborative Research Project. Annual Reports on Fertilizer Use on Barley in North Syria. Syrian Arab Republic, Min. Agric. Agrarian Reform, Soils Directorate, and ICARDA, Aleppo, Syria.Google Scholar
  222. Taimeh, A.Y., and B. Hattar. 1988. Phosphorus fixation in some calcareous Vertisols in Jordan. Dirasat. 15: 7–29.Google Scholar
  223. Talibudeen, O. 1981. Precipitation, pp. 81–116. In: Greenland, D.J., Hayes, M.H.B. (eds.) The Chemistry of Soil Processes. Wiley, Chichester, U.K.Google Scholar
  224. Talibudeen, O., and P. de Arambarri. 1964. The influence of the amount and the origin of calcium carbonate on the isotopically exchangeable phosphate in calcareous soils. J. Agric. Sci. 62: 93–97.CrossRefGoogle Scholar
  225. Tnani, T., and J. Kanenberg. 1971. Examen des differentes méthodes de determination du P et K assimilables dans les sols riches en carbonates de la Tunisie: et interpretation des resultats d’analyses. Ann. de I’Inst. Nat. Rech. Agron. de Tunisie vol. 44 (5): 32.Google Scholar
  226. Torrent, J. 1976. Génesis de un suelo desarrollado en una arcosa al sur de la Provincia de Madrid. Anal. Edaf. Agrob. 35: 667–686.Google Scholar
  227. Torrent, J. 1987. Rapid and slow phosphate sorption by Mediterranean soils: effect of iron oxides. Soil Sci. Soc. Am. J. 51: 78–82.CrossRefGoogle Scholar
  228. Torrent, J., V. Barrón, and U. Schwertmann. 1990. Phosphate adsorption and desorption by goethites differing in crystal morphology. Soil Sci. Soc. Am. J. 54: 1007–1012.CrossRefGoogle Scholar
  229. Torrent, J., and J. Benayas. 1977. Origin of gibbsite in a weathering profile from granite in West-Central Spain. Geoderma 19: 37–49.CrossRefGoogle Scholar
  230. Torrent, J., U. Schwertmann, and D.G. Schulze. 1980. Iron oxide mineralogy of some soils of two river terrace sequences in Spain. Geoderma 23: 191–208.CrossRefGoogle Scholar
  231. Truog, E. 1930. The determination of the readily available phosphorus of soil. J. Am. Soc. Agron., pp. 874–882.Google Scholar
  232. Turan, C., B. Kacar, and M. Sagatay. 1976. Phosphorus fixation in soils of the Antalya coastal region. Yayinlari Ziraat Fakültesi, Ankara Üniversitesi 588: 1–53.Google Scholar
  233. Wada, K. 1977. Allophane and imogolite, pp. 603–638. In: Dixon, J.B., Weed, S.W. (eds.). Minerals of Soil Environments. Soil Sci. Soc. Am. J., Madison, Wise.Google Scholar
  234. Walker, T.W., and J.K. Syers. 1976. The fate of phosphorus during pedogenesis. Geoderma 15: 1–19.CrossRefGoogle Scholar
  235. Walsh, L.M., and J.D. Beaton. 1973. Soil Testing and Plant Analysis. Soil Sci. Soc. Am., Madison, Wis.Google Scholar
  236. White, R.E. 1981. Retention and release of phosphate by soil and soil constituents. Soils Agric. Crit. Rep. Appl. Chem. 2: 71–114.Google Scholar
  237. Yadav, B.R., K.V. Paliwal, and N.M. Nimgade. 1984. Effect of magnesium-rich waters on phosphate adsorption by calcite. Soil Sci. 138: 153–157.CrossRefGoogle Scholar
  238. Yurtsever, N. 1965. A tentative correlation for the Olsen bicarbonate phosphorus soil test with wheat responses under Turkish soil conditions. Soil Sci. 100: 163–167.CrossRefGoogle Scholar
  239. Yurtsever, N. 1987. A study on calibration for the Olsen phosphorus soil test with wheat responses under Turkish soil conditions, pp. 97–115. In: Soltanpour, P.N. (ed.) Proc. First Regional Soil Test Calibration Workshop. ICARDA. Aleppo, Syria.Google Scholar
  240. Yurtsever, N. 1988. Two soil tests for phosphorus calibrated with barley responses in rainfed conditions of Turkey, pp. 36–44. In: Matar, A.E., Soltanpour, P.N., Chouinard, A. (eds.) Proc. Second Regional Soil Test Calibration Workshop. ICARDA, Aleppo, Syria.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • A. Matar
  • J. Torrent
  • J. Ryan

There are no affiliations available

Personalised recommendations