Practical Problems in Calculating Thermodynamic Functions for Crystalline Substances from Empirical Force Fields

  • C. M. Gramaccioli
  • T. Pilati
Part of the Advances in Physical Geochemistry book series (PHYSICAL GEOCHE, volume 10)


The correlation between the structure and thermodynamic properties of minerals has long been considered fundamental. Besides the first-law functions, it is possible to calculate entropy and free energy for a pure ideal crystal if the vibrational properties are taken into account. These calculations imply the precise evaluation of spectroscopic data (Raman, IR, phonon dispersion curves) and allow good estimates of elastic properties and atomic displacement parameters.


Thermodynamic Function Lattice Dynamic Acta Cryst Harmonic Approximation Inelastic Neutron Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Au, A.Y. and Weidner, D.J. (1986). Theoretical modelling of the elastic properties of forsterite: A polyhedral approach. Phys. Chem. Miner. 13, 360–370.Google Scholar
  2. Bertaut, F. (1952). L’Energie electrostatique de reseaux ioniques. J. Phys. 13, 499–505.Google Scholar
  3. Bertaut, F. (1978a). The equivalent charge concept and its application to the electrostatic energy of charges and multipoles. J. Phys. 39, 1331–1348.CrossRefGoogle Scholar
  4. Bertaut, F. (1978b). Electrostatic potentials, fields and field gradients. J. Phys. Chem. Solids 39, 97–102.CrossRefGoogle Scholar
  5. Bertaut, F. (1983). Energie dipolaire ďune structure modulee. C. R. Acad. Sci. Ser. II 296, 1123–1127.Google Scholar
  6. Bertaut, F. (1985). Analyse de representation de la phase incommensurable de K2SeO4, cas ďun groupe ďespace non symmorphe. C.R. Acad. Sci. Ser. II 300, 589–594.Google Scholar
  7. Bertaut, F. (1986). Champs, energies coulombienne, dipolaire et de polarisation dans une structure incommensurable. C.R. Acad. Sci. Ser. II 302, 1137–1142.Google Scholar
  8. Birle, J.D., Gibbs, G.V., Moore, P.B., and Smith, J.V. (1968). Crystal structures of natural olivines. Amer. Mineral. 53, 807–824.Google Scholar
  9. Bocchio, R., Brajkovic, A., and Pilati, T. (1986). Crystal chemistry of the olivines in the peridotites from the Ivrea-Verbano zone (Western Italian Alps). Neues Jahrb. Miner. Monatsh. 7, 313–324.Google Scholar
  10. Born, M. and Huang, K. (1954). Dynamical Theory of Crystal Lattices. Oxford, Clarendon Press.Google Scholar
  11. Burnham, C.W. (1990). The ionic model: Perceptions and realities in mineralogy. Amer. Mineral 75, 443–463.Google Scholar
  12. Busing, W.R. (1981). WMIN, a computer program to model molecules and crystals in terms of potential energy functions. ORNL-5747, U.S. Technical Inform. Sev.Google Scholar
  13. Busing, W.R. and Matsui, M. (1984). The application of external forces to computational models of crystals. Acta Cryst. A40, 532–538.Google Scholar
  14. Catlow, C.R.A. and Mackrodt, W.C. (1982). Computer simulation of solids, in Lecture Notes in Physics, Vol. 166, Springer-Verlag, Berlin.Google Scholar
  15. Catti, M. (1982). Atomic charges in Mg2SiO4 (forsterite), fitted to thermoelastic and structural properties. J. Phys. Chem. Solids 43, 1111–1118.CrossRefGoogle Scholar
  16. Catti, M. (1989). Modelling of structural and elastic changes of forsterite (Mg2SiO4) under stress. Phys. Chem. Miner. 16, 582–590.CrossRefGoogle Scholar
  17. Choudhury, N., Chaplot, S.L., and Rao, K.R. (1989). Equation of state and melting point studies of forsterite. Phys. Chem. Miner. 16, 599–605.CrossRefGoogle Scholar
  18. Cochran, W. (1971). Lattice dynamics of ionic and covalent crystals. C.R.C. Crit. Rev. Solid State Sci. 2, 1–83.CrossRefGoogle Scholar
  19. Cochran, W. (1973). The Dynamics of Atoms in Crystals. London, Arnold.Google Scholar
  20. Eastman, E.D. and McGavock, W.C. (1937). The heat capacity and entropy of rhombic and monoclinic Sulfur. J. Amer. Chem. Soc. 59, 145–151.CrossRefGoogle Scholar
  21. Elcombe, M. (1967). Some aspects of the lattice dynamics of quartz. Proc. Phys. Soc. 91, 947–958.CrossRefGoogle Scholar
  22. Ewald, P.P. (1921). Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. (Leipzig) 64, 253–287.CrossRefGoogle Scholar
  23. Filippini, G., Gramaccioli, C.M., Simonetta, M., and Sufl’ritti, G. B. (1976). Lattice-dynamical applications to crystallographic problems: Consideration of the Brillouin zone sampling. Acta Cryst. A32, 259–264.Google Scholar
  24. Fujino, K., Sasaki, S., Takeuchi, Y., and Sadanaga, R. (1981). X-ray determination of electron distributions in forsterite, fayalite and tephroite. Acta Cryst. B37, 513–518.Google Scholar
  25. Ghose, S. (1985). Macroscopic to microscopic, in Lattice Dynamics, Phase Transitions and Soft Modes, Reviews in Mineralogy, S.W. Kieffer and A. Navrotsky, eds., Mineralogy Society of America, Washington, D.C.; Vol. 14, Chap. 4.Google Scholar
  26. Ghose, S., Hastings, J.M., Corliss, L.M., Rao, K.R., Chaplot, S.L., and Choudhury, L. (1987). Study of phonon dispersion relations in forsterite, Mg2SiO4 by inelastic neutron scattering. Solid State Commun. 63, 1045–1050.CrossRefGoogle Scholar
  27. Gramaccioli, C.M. (1987). Spectroscopy of molecular crystals and crystallographic implication. Int. Rev. Phys. Chem. 6 (4), 337–349.CrossRefGoogle Scholar
  28. Gramaccioli, C.M. and Filippini, G. (1983). Lattice-dynamical evaluation of temperature factors in non-rigid molecular crystals: A first application to aromatic hydrocarbons. Acta Cryst. A39, 784–791.Google Scholar
  29. Gramaccioli, C.M. and Filippini, G. (1984). Lattice-dynamical calculations for orthorhombic sulfur: A non-rigid molecular model. Chem. Phys. Lett. 108, 585–588.CrossRefGoogle Scholar
  30. Gramaccioli, C.M. and Filippini, G. (1985). Thermal motion for non-rigid molecules in crystals: Symmetry of the generalized mean-square displacement tensor W.Acta Cryst. A41, 356–361.Google Scholar
  31. Guthrie, G.B., Jr., Scott, D.W., and Waddington, G. (1954). Thermodynamic functions and heat of formation of S 8 (gas). J. Amer. Chem. Soc. 76, 1488–1493.CrossRefGoogle Scholar
  32. Hazen, R.N. (1976). Effects of temperature and pressure on the crystal structure of forsterite. Amer. Mineral. 61, 1280–1293.Google Scholar
  33. Iishi, K. (1976). The analysis of the phonon spectrum of α-quartz based on a polarizableion model. Z. Krist. 144, 289–303.CrossRefGoogle Scholar
  34. Iishi, K. (1978a). Lattice-dynamical study of the β -quartz phase transition. Amer. Mineral. 63, 1190–1197.Google Scholar
  35. Iishi, K. (1978b). Lattice Dynamics of Corundum. Phys. Chem. Miner. 3, 1–10.CrossRefGoogle Scholar
  36. Iishi, K. (1978c). Lattice dynamics of forsterite. Amer. Mineral. 63, 1198–1208.Google Scholar
  37. Iishi, K., Salje, E., and Werneke, C. (1979). Phonon spectra and rigid-ion model calculations on andalusite. Phys. Chem. Miner. 4, 173–186.CrossRefGoogle Scholar
  38. Iishi, K., Miura, M., Shiro, Y., and Murata, H. (1983). Lattice dynamics of α-quartz including the effect of the width of the atomic electron distribution. Phys. Chem. Miner. 9, 61–66.CrossRefGoogle Scholar
  39. Johnson, C.K. (1976). ORTEPII: A FORTRAN thermal-ellipsoid plot program for crystal structure illustrations. Rept. ORNL-5138. Oak Ridge Nat. Lab. Tenn.CrossRefGoogle Scholar
  40. Kellermann, E.W. (1940). Theory of the vibrations of the sodium chloride lattice. Phil. Trans. R. Soc. Lond. 238, 513–548.CrossRefGoogle Scholar
  41. Kiefl’er, S.W. (1985). Macroscopic to microscopic, in Heat Capacity and Entropy: Systematic Relations to Lattice Vibrations, Reviews in Mineralogy, 14, S.W. Kieffer and A. Navrotsky, eds., Mineralogy Society of America, Washington, D.C.; Vol. 14, Chap. 3.Google Scholar
  42. Kroon, P. A. and Vos, A. (1978). Convergence of Brillouin zone summations. Acta Cryst. A34, 823–824.Google Scholar
  43. Kroon, P.A. and Vos, A. (1979). Thermal diffuse scattering for molecular crystals: Error in X-ray diffraction intensities and atomic parameters. Acta Cryst. A35, 675–684.Google Scholar
  44. Lam, P.K., Rici, Y., Lee, M.W., and Sharma, S.K. (1990). Structural distorsions and vibrational modes in Mg2SiO4. Amer. Mineral. 75, 109–119.Google Scholar
  45. Langen, R. (1987). Ph.D. Thesis, Die Abhängigkeit der Kationenverteilung in einem Mg-Fe-Olivin (Som Carlos, Arizona vom Sauerstofîpartialdruck. Rheinisches Friedrich-Wilhelm Universität, Bonn.Google Scholar
  46. Matsui, M. and Busing, W.R. (1984a). Computational modeling of the structure and elastic constants of the olivine and spinel forms of Mg2SiO4. Phys. Chem. Miner. 11, 55–59.CrossRefGoogle Scholar
  47. Matsui, M. and Busing, W.R. (1984b). Calculation of the elastic constants and high-pressure properties of diopside, CaMgSi2O6. Amer. Mineral. 69, 1090–1095.Google Scholar
  48. Matsui, M. and Matsumoto, T. (1982). An interatomic potential-function model for Mg, Ca and CaMg olivines. Acta Cryst. A38, 513–515.Google Scholar
  49. Miyamoto, M., Takeda, H., Fujino, K., and Takeuchi, Y. (1982). The ionic compressibilities and radii estimated for some transition metals in olivine structure. Miner. J. 11, 172–179.CrossRefGoogle Scholar
  50. Ottonello, G. (1986). Energetics of multiple oxides with spinel structure. Phys. Chem. Miner. 13, 79–90.CrossRefGoogle Scholar
  51. Parker, S.C., Catlow, C.R.A., and Cormack, A.N. (1983). Prediction of mineral structure by energy minimisation techniques. J. Chem. Soc., Chem. Commun. 529, 936–938.CrossRefGoogle Scholar
  52. Pawley, G.S. and Rinaldi, R.P. (1972). Constrained refinement of orthorhombic sulphur. Acta Cryst. B28, 3605–3609.Google Scholar
  53. Pilati, T., Bianchi, R., and Gramaccioli, C.M. (1990a). Evaluation of atomic displacement parameters by lattice-dynamical calculations: Efficiency in Brillouin-zone sampling. Acta Cryst. A46, 485–489.Google Scholar
  54. Pilati, T., Bianchi, R., and Gramaccioli, C.M. (1990b). Evaluation of Coulombic lattice sums for vibrational calculations in crystals: An extension of Bertauťs method. Acta Cryst. A46, 309–315.Google Scholar
  55. Pilati, T., Bianchi, R., and Gramaccioli, C.M. (1990c). Lattice-dynamical estimation of atomic thermal parameters in silicates: Forsterite α-Mg2SiO4. Acta Cryst. B46, 301–311.Google Scholar
  56. Price, G.D. and Parker, S.C. (1984). Computer simulations of the structural and physical properties of the olivine and spinel polymorphs of Mg2SiO4. Phys. Chem. Miner. 10, 209–216.CrossRefGoogle Scholar
  57. Price, G.D., Parker, S.C., and Leslie, M. (1987a). The lattice dynamics of forsterite. Miner. Magazine 51, 157–170.CrossRefGoogle Scholar
  58. Price, G.D., Parker, S.C., and Leslie, M. (1987b). The lattice dynamics and thermodynamics of the Mg2SiO4 polymorphs. Phys. Chem. Miner. 15, 181–190.CrossRefGoogle Scholar
  59. Price, G.D., Parker, S.C., and Yeomans, J. (1985). The energetics of polytypic structures: A computer simulation of magnesium silicate spinelloids. Acta Cryst. B41, 231–239.Google Scholar
  60. Rao, K.R., Chaplot, S.L., Choudhury, L., Ghose, S., Hastings. J.M. and Corliss L.M. (1988). Lattice dynamics and inelastic neutron scattering from forsterite, Mg2SiO4: Phonon dispersion relation, density of states and specific heat. Phys. Chem. Miner. 16, 83–97.CrossRefGoogle Scholar
  61. Reid, J.S. and Smith, T. (1970). Improved Debye-Waller factors for some alkali halides. J. Phys. Chem. Solids 31, 2689–2697.CrossRefGoogle Scholar
  62. Rinaldi, R. and Pawley, G.S. (1975). An investigation of the intermolecular modes in orthorhombic sulphur. J. Phys. C 8, 599–616.CrossRefGoogle Scholar
  63. Robie, R.A., Hemingway, B.S., and Takei, H. (1982). Heat capacities and entropies of Mg2SiO4, Mn2SiO4, and Co2SiO4 between 5 and 380 K. Amer. Miner. 67, 470–482.Google Scholar
  64. Vieillard, P. (1982). Modele de Calcul des Energies de Formation des Mineraux, Bati sur la Connoissance Raffinée des Structures Cristallines. Memoire 69, Université Louis Pasteur de Strasbourg, Institut de Geologie.Google Scholar
  65. Willis, B.T.M. and Pryor, A.W. (1975). Thermal Vibrations in Crystallography. Cambridge University Press, Cambridge, U.K.Google Scholar
  66. Woods, A.D.B., Cochran, W., and Brockhouse, B.N. (1960). Lattice dynamics of alkali halide crystals. Phys. Rev. 119, 980–999.CrossRefGoogle Scholar
  67. Woods, A.D.B., Brockhouse, B.N., and Cowley, R.A. (1963). Lattice dynamics of alkali halide crystals. II. Experimental studies of KBr and Nal. Phys. Rev. 131, 1025–1029.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • C. M. Gramaccioli
    • 1
  • T. Pilati
    • 2
  1. 1.Department of Earth SciencesUniversity of MilanMilanItaly
  2. 2.CNR, Centro per lo Studio delle Relazioni tra Struttura e Reattivita ChimicaMilanItaly

Personalised recommendations