Skip to main content

A Structure Energy Model for C2/c Pyroxenes in the System Na-Mg-Ca-Mn-Fe-Al-Cr-Ti-Si-O

  • Chapter

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 10))

Abstract

Pyroxenes, like feldspars, occupy a position that is “chemically central to the composition realm of rocks” (Robinson, 1980) and occur ubiquitously in most part of igneous and metamorphic terrains. Understanding their crystal-chemical and thermodynamic properties is thus of primary importance in the earth sciences. Due to their importance in earth sciences, pyroxenes have been the object of various petrologic and thermodynamic investigations. Most published experimental data concern the pyroxene quadrilateral and have been restricted to the binary joins. The work of modeling multicomponent pyroxene mixtures using the binary solution data has begun only recently, and we wish to contribute to its development by presenting a series of structure-energy calculation procedures for the various phases of interest. This first work concerns the structural class C2/c that is the most representative of pyroxenes in nature and for which most crystal-chemical and thermodynamic data are available.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akimoto, S. (1972). The system MgO-FeO-SiO2 at high pressures and temperatures. Phase equilibria and elastic properties. Tectonophys 13, 161–187.

    Article  Google Scholar 

  • Baerlocher, C., Hepp, A., and Meier, W.M. (1977). DLS-76. A program for the Simulation of Crystal Structures by Geometric Refinement. Institute of Crystallography and Petrography, ETH Zurich, Switzerland.

    Google Scholar 

  • Berman, R.G. (1988). Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-A12O3-SiO2-TiO2-H2O-CO2. J. Petrol., 29, 445–522.

    Google Scholar 

  • Birch, F. (1966). Compressibility; elastic constants, Geology Society American Mem., Vol. 97, pp. 97–174.

    Google Scholar 

  • Bokreta, M. and Ottonello, G. (1987). Enthalpy of formation of end-member garnets. EOS 68, 448.

    Google Scholar 

  • Bruno, E., Carbonin, S., and Molin, G.M. (1982). Crystal structures of Ca-rich clino-pyroxenes on the CaMgSi2O6-Mg2Si2O6 join. Tsch. Min. Petr. Mitt. 29, 223–240.

    Article  Google Scholar 

  • Burnham, C.W., Clark, J.R., Papike, J.J., and Prewitt, C.T. (1967). A proposed crystallo-graphic nomenclature for clinopyroxene structures. Zeit. Krist. 125, 1–6.

    Article  Google Scholar 

  • Cameron, M. and Papike, J.J. (1980). Crystal chemistry of silicate pyroxenes. Rev. Mineral. 7, 5–87.

    Google Scholar 

  • Carbonin, S., Dal Negro, A., Ganeo, S., and Piccirillo, E.M. (1991). Influence of magma composition and oxygen fugacity on the crystal structure of C2/c clinopyroxenes from a basalt-pantellerite suite. Contrib. Mineral. Petrol. 108, 34–42.

    Article  Google Scholar 

  • Catti, M. (1981a). The lattice energy of forsterite. Charge distribution and formation enthalpy of the SiO4- 4ion. Phys. Chem. Mineral 7, 20–25.

    Article  Google Scholar 

  • Catti, M. (1981b). A generalized Born-Mayer parametrization of the lattice energy in orthorombic ionic crystals. Acta Cryst. A37, 72–76.

    Google Scholar 

  • Chatterjee, N. (1989). An internally consistent thermodynamic data base on minerals: Applications to the earth’s crust and upper mantle. Ph.D. Thesis, City University, New York.

    Google Scholar 

  • Clark, S.P., Jr., Schairer, J.F., and De Neufville, J. (1962). Phase relations in the system CaMgSi2O6-CaAl2SiO6-SiO2 at low and high pressure. Carnegie Inst. Wash. Yearbook 61, 59–68.

    Google Scholar 

  • Clark, J.R., Appleman, D.E., and Papike, J.J. (1969). Crystal-chemical characterization of clinopyroxenes based on eight new structure refinements. Miner. Soc. Amer. Spec. Papers 3, 31–50.

    Google Scholar 

  • Cohen, R.E. (1986). Thermodynamic solution properties of aluminous clinopyroxenes: nonlinear least squares refinements. Geochim. Cosmochim. Acta. 50, 563–575.

    Article  Google Scholar 

  • Dal Negro, A., Carbonin, S., Molin, G.M., Cundari, A., and Piccirillo, E.M. (1982). Intracrystalline cation distribution in natural clinopyroxenes of tholeiitic, transitional and alkaline basaltic rocks. Adv. Physical Geochem. 2, 117–150.

    Google Scholar 

  • Davidson, P.M. and Lindsley, D.H. (1989). Thermodynamic analysis of pyroxene-olivine-quartz equilibria in the system CaO-MgO-FeO-SiO2. Amer. Mineral 74, 18–30.

    Google Scholar 

  • Delia Giusta, A., Ottonello, G., and Secco, L. (1990). Precision estimates of interatomic distances using site occupancies, ionization potentials and polarizability in Pbnm silicate olivines. Acta Cryst. B46, 160–165.

    Google Scholar 

  • Doroshev, A.M., Malinovskaya, Ye. K., Surkov, N.V., and Bulakov, V.K. (1987). Synthesis and unit cell parameters of CaMgSi2O6-CaAl2SiO6 clinopyroxenes. Geochem. Internat. 16, 83–92.

    Google Scholar 

  • Dunitz, J.D. and Orgel, L.E. (1957). Electronic properties of transition metal oxides. II. Cation distribution among octahedral and tetrahedral sites. J. Phys. Chem. Solids 3, 318–323.

    Article  Google Scholar 

  • Ganguly, J. (1973). Activity-composition relation of jadeite in omphacite pyroxene: Theoretical deductions. Earth Planet. Sci. Lett. 19, 145–153.

    Article  Google Scholar 

  • Ganguly, J. and Saxena, S.K. (1987). Mixtures and Mineral Reactions. Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  • Gasparik, T. (1985). Experimentally determined composition of diopside-jadeite pyroxenes in equilibrium with albite and quartz at 1200–1350°C and 15–34 Kbar. Geochim. Cosmochim. Acta 49, 865–870.

    Article  Google Scholar 

  • Gasparik, T. and Lindsley, D.H. (1980). Phase equilibria at high pressure of pyroxenes containing monovalent and trivalent ions, in Reviews in Mineralogy, C.T. Prewitt, ed., Vol. 7, Mineralogy Society of America Washington, D.C.

    Google Scholar 

  • Gilbert, T.L. (1968). Soft sphere model for closed-shell atoms and ions. J. Chem. Phys. 49, 2640–2642.

    Article  Google Scholar 

  • Haselton, H.T., Jr., Hemingway, B.S., and Robie, R.A. (1984). Low-temperatute heat capacities of CaAl2SiO6 glass and pyroxene and thermal expansion of CaAl2SiO6. Amer. Mineral. 69, 481–489.

    Google Scholar 

  • Heitler, W. and London, F. (1927). Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. B. Physik. 44, 455–472.

    Article  Google Scholar 

  • Helgeson, H.C., Delany, J.M., Nesbitt, H.W., and Bird, D.K. (1978). Summary and critique of thermodynamic properties of rock-forming minerals. Amer. J. Sci. 278A, 1–229.

    Google Scholar 

  • Hemingway, B.S., Krupka, K.M., and Robie, R.A. (1981). Heat capacities of the alkali feldspars between 350 and 1000 K from differential scanning calorimetry, the thermodynamic functions of alkali feldspars from 298.15 to 1400 K, and the reaction quartz + jadeite = albite. Amer. Mineral. 66, 1202–1215.

    Google Scholar 

  • Holland, T.J.B. (1983). The experimental determination of activities in disordered and short-range ordered jadeitic pyroxenes. Contrib. Mineral. Petrol. 82, 214–220.

    Article  Google Scholar 

  • Holland, T.J.B., Navrotsky, A., and Newton, R.C. (1979). Thermodynamic parameters of CaMgSi2O6-Mg2Si2O6 pyroxenes based on regular solution and cooperative disordering models. Contrib. Mineral. Petrol 69, 337–344.

    Article  Google Scholar 

  • IUPAC (1979). Manual of symbols and therminology for physicochemical quantities and units. Pure & Appl. Chem. 51, 1–41.

    Article  Google Scholar 

  • James, F. and Roos, M. (1977). MINUIT. A system for function minimization and analysis of the parameter errors and correlations. CERN Computer Ctr., Geneva, Switzerland.

    Google Scholar 

  • Lindsley, D.H. (1981). The formation of pigeonite on the join hedembergite-ferrosilite at 11.5 and 15 Kbar: Experiments and a solution model. Am. Mineral 66, 1175–1182.

    Google Scholar 

  • Lindsley, D.H., Munoz, J.L., and Finger, L.W. (1969). Unit-cell parameters of clinopyroxenes along the join hedenbergite-ferrosilite. Carnegie Inst. Wash. Yearbook 67, 91–92.

    Google Scholar 

  • Lindsley, D.H., Grover, J.E., and Davidson, P.M. (1981). The thermodynamics of the Mg2Si2O6-CaMgSi2O6 join: A review and a new model, in Advances in Physical Geochemistry, R.C. Newton, A., Navrotsky, B.J. and Wood, eds., Springer-Verlag, Berlin-Heidelberg-New York, Vol. 1, pp. 149–175.

    Google Scholar 

  • Meier, W.M. and Villiger, H. (1969). Die Methode der Abstandsverfeinerung zur Bestim-mung der Atomkoordinaten idealisierter Gerustsruckturen Zeits. Kristallogr. 129, 411–423.

    Article  Google Scholar 

  • Miyamoto, M., Takeda, H., Fujino, K., and Takeuchi, Y. (1982). The ionic compressibilities and radii estimates for some transition metals in olivine structures. Aim. J. 11, 172–179.

    Google Scholar 

  • Naumov, G.B., Ryzhenko, B., and Khodakovsky, I.L. (1971). Handbook of Thermodynamic Data. Atomizdat, Moscow.

    Google Scholar 

  • Newton, R.C., Charlu, T.V., and Kleppa, O.J. (1977). Thermochemistry of high pressure garnets and clinopyroxenes in the system CaO-MgO-Al2O3-SiO2. Geochim. Cosmo-chim. Acta 41, 369–377.

    Article  Google Scholar 

  • Newton, R.C., Charlu, T.V., Anderson, P.A.M., and Kleppa, O.J. (1979). Thermochemistry of synthetic clinopyroxenes on the join CaMgSi2O6-Mg2Si2O6. Geochim. Cosmochim. Acta 42, 55–60.

    Article  Google Scholar 

  • Newton, W. and McCready, N. (1948). Thermodynamic properties of sodium silicates. C. Phys. Coll. Chem. 52, 1277–1283.

    Article  Google Scholar 

  • Nickel, K.G. and Brey, G. (1984). Subsolidus orthopyroxene-clinopyroxene systematics in the system CaO-MgO-SiO2 to 60 Kbar: A re-evaluation of the regular solution model. Contrib. Mineral. Petrol 87, 35–42.

    Article  Google Scholar 

  • Ottonello, G. (1987). Energies and interactions in binary (Pbnm) orthosilicates: A Born parametrization. Geochim. Cosmochim. Acta 51, 3119–3135.

    Article  Google Scholar 

  • Ottonello, G., Delia Giusta, A., and Molin, G.M. (1989). Cation ordering in Ni-Mg olivines. Amer. Mineral. 74, 411–421.

    Google Scholar 

  • Ottonello, G., Princivalle, F., and Delia Giusta, A. (1990). Temperature, composition and f o2 effects on intersite distribution of Mg and Fe2+ in olivines. Phys. Chem. Miner. 17, 301–312.

    Article  Google Scholar 

  • Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Cornell University Press, Ithaca, New York.

    Google Scholar 

  • Popp, R.K. and Gilbert, M.C. (1972). Stability of acmite-jadeite pyroxenes at low pressures. Amer. Mineral. 57, 1210–1231.

    Google Scholar 

  • Robie, R.A., Hemingway, B.S., and Fisher, J.R. (1978). Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. U.S. Geol. Surv. Bull. 1452, pp. 1–452.

    Google Scholar 

  • Robinson, P. (1980). The composition space of terrestrial pyroxenes-internal and expernal limits. Rev. Mineral. 7, 419–494.

    Google Scholar 

  • Sack, R.O. (1980). Some constraints on the thermodynamic mixing properties of Fe-Mg orthopyroxenes and olivines. Contrib. Mineral. Petrol. 71, 257–269.

    Article  Google Scholar 

  • Saxena, S.K. (1981). Fictive component model of pyroxenes and multicomponent phase equilibria. Contrib. Mineral Petrol 78, 245–251.

    Google Scholar 

  • Saxena, S.K. (1983). Exsolution and Fe2+-Mg order-disorder in pyroxenes, in Advances in Physical Geochemistry, S.K. Saxena, ed., Springer-Verlag, Berlin-Heidelberg-New York, Vol. 2, pp. 61–80.

    Google Scholar 

  • Saxena, S.K. (1990). Programs INSP and THERMO and corresponding data-base (unpublished).

    Google Scholar 

  • Saxena, S.K. and Chatterjee, N. (1986). Thermochemical data on mineral phases. I. The system CaO-MgO-Al2O3-SiO2. J. Petrol 27, 827–842.

    Google Scholar 

  • Saxena, S.K. and Eriksson, G.E. (1983). High temperature phase equilibria in a solar-composition gas. Geochim. Cosmochim. Acta 47, 1865–1874.

    Article  Google Scholar 

  • Saxena, S.K., Sykes, J., and Eriksson G. (1986). Phase equilibria in the pyroxene quadrilateral. J. Petrol, 27, 843–852.

    Google Scholar 

  • Shannon, R.D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751–767.

    Google Scholar 

  • Skinner, B.J. (1966). Thermal expansion, in Handbook of Physical Constants, S.P. Clark, Jr., ed., Geology Society of Amer. Mem. Vol. 97, pp. 75–95.

    Google Scholar 

  • Smith, J.V. (1959). The crystal structure of proto-enstatite. Acta Cryst. 12, 515–519.

    Article  Google Scholar 

  • Steele, I.M. (1975). Mineralogy of lunar norite 78235; second lunar occurrence of P21Ca pyroxene from Apollo 17 soils. Amer. Mineral 60, 1086–1091.

    Google Scholar 

  • Stull, D.R. and Prophet, H. (1971). JANAF Thermochemical Tables. Data Series, Washington, D.C., Vol. 37, pp. 1–1141.

    Google Scholar 

  • Syono, Y., Akimoto, S., and Matsui, Y. (1971). High pressure transformations in zinc silicates. Solid State Chem. 3, 369–380.

    Article  Google Scholar 

  • Tosi, M. (1964). Cohesion of ionic solids in the Born model. Solid State Phys. 16, 1–120.

    Article  Google Scholar 

  • Tosi, M. and Fumi, F.G. (1964). Ionic sizes and Born repulsive parameters in the NaCl-type alkali halides-II. Phys. Chem. Solids. 25, 45–52.

    Article  Google Scholar 

  • Turnock, A.C., Lindsley, D.H., and Grover, J.E. (1973). Synthesis and unit cell parameters of Ca-Mg-Fe pyroxenes. Amer. Mineral 58, 50–59.

    Google Scholar 

  • Vieillard, P. (1982). Modele de calcul des energies de formation des mineraux, bati sur la connaissance affinee des structures cristallines. C.N.R.S. Mem. 69, 1–206.

    Google Scholar 

  • Wagman, D.D., Evans, W.H., Parker, V.B., Halow, I., Bailey, S.M., and Schumm, R.H. (1981). Selected values of chemical thermodynamic properties. Nbs Tech. Note, 270–8, pp. 1–134.

    Google Scholar 

  • Wood, B.J., Holland, T.J.B., Newton, R.C. and Kleppa, O.J. (1980). Thermochemistry of jadeite-diopside pyroxenes. Geochim. Cosmochim. Acta 44, 1363–1371.

    Article  Google Scholar 

  • Zener, C. (1931). Interchange of translational, rotational and vibrational energy in molecular collisions. Phys. Rev. 37, 556–569.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Ottonello, G., Giusta, A.D., Negro, A.D., Baccarin, F. (1992). A Structure Energy Model for C2/c Pyroxenes in the System Na-Mg-Ca-Mn-Fe-Al-Cr-Ti-Si-O. In: Saxena, S.K. (eds) Thermodynamic Data. Advances in Physical Geochemistry, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2842-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2842-4_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7692-0

  • Online ISBN: 978-1-4612-2842-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics