Crystal Chemical and Energetic Characterization of Solid Solution

  • V. S. Urusov
Part of the Advances in Physical Geochemistry book series (PHYSICAL GEOCHE, volume 10)


The golden age of classic crystal chemistry (1920s–30s) yielded many well-known empirical rules and generalizations concerning the formation of solid solutions or isomorphous mixtures (mixed crystals). Among them are Vegard’s rule of additive dependence of lattice spacings on composition, Goldschmidt and Hume-Roseri’s rules of maximal 15% difference of ionic or atomic radii for the existence of wide miscibility, Goldschmidt and Fersman’s rules of substitution polarity (in relation to sizes and charges of the ions replacing each other), and the criteria of proximity of polarizabilities or electronegativities of substituents, etc. In the sections that follow we will return to an analysis of these rules from a more sophisticated and modern point of view.


Solid Solution Crystal Chemical Alkali Halide Secondary Displacement Solid Solution Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahtee, M. (1969). Lattice constants of some binary alkali halide solid solutions. Ann. Acad. Sci. Fenn.AVI, N313, 1–14.Google Scholar
  2. Ahtee, M. and Inkinen, O. (1970). Critical solution temperatures of binary alkali halide solid solutions. Ann. Acad. Sci. Fenn.AVI, N355, 1–14.Google Scholar
  3. Akaogi, M., Ito, E., and Navrotsky, A. (1989). Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermo-chemical calculations and geophisical application. J. Geophys. Res.94, 15671–15685.CrossRefGoogle Scholar
  4. Anderson, O.L. and Nafe, J.E. (1965). The bulk modulus-volume relationship for oxide compounds and related geophysical problems. J. Geophys. Res.70, 3951–3953.CrossRefGoogle Scholar
  5. Anderson, D.L. and Anderson, O.L. (1970). The bulk modulus-volume relationship for oxides. J. Geophys. Res.75, 3494–3500.CrossRefGoogle Scholar
  6. Bandyopadhyay, S. and Deb, S.K. (1988). Divalent defects in alkali halides. Ind. J. Phys.A62, 298–302.Google Scholar
  7. Barrett, W.T. and Wallace, W.E. (1954). Studies of NaCl-KCl solid solutions. I. Heats of formation, lattice spacings, Schotky defects and mutual solubility. J. Amer. Chem. Soc.76, 366–380.CrossRefGoogle Scholar
  8. Bhardway, M.C. and Roy, R. (1971). Effect of high pressure on crystal solubility in the system NaCl-KCl. J. Phys. Chem. Solid 32, 1603–1607.CrossRefGoogle Scholar
  9. Born, M. (1923). Atomtheorie des festen Zustandes. Berlin.Google Scholar
  10. Bowman, R.C. (1973). Theoretical solution enthalpies of divalent impurities in the alkali halides. J. Chem. Phys.59, 2215–2223.CrossRefGoogle Scholar
  11. Boyce, J.B. and Mikkelsen, J.C. (1985). Local structure of ionic solid solutions: Extended X-ray absorption fine-structure study. Phys. Rev.B31, 6903–6905.Google Scholar
  12. Callahan, S.J.E. and Smith, N.O. (1966). Crystallographic studies of NH4Cl-NH4Br solid solutions. Adv. X-ray Anal.9, 156–169.Google Scholar
  13. Davies, P.K. and Navrotsky, A. (1983). Quantitative correlations of deviations from ideality in binary and pseudobinary solid solutions. J. Solid State Chem.46, 1–22.CrossRefGoogle Scholar
  14. Dollase, W.A. (1980). Optimum distance model of relaxation around substitutional defects. Phys. Chem. Miner.6, 295–304.CrossRefGoogle Scholar
  15. Durham, G.S. and Hawkins, J.A. (1951). Solid solutions of the alkali halides. II. The theoretical calculation of lattice constants, heats of mixing and distributions between solid and aqueous phases. J. Chem. Phys.19, 149–156.CrossRefGoogle Scholar
  16. Fancher, D.L. and Barsch, G.R. (1969). Lattice theory of alkali halide solid solutions. I. Heat of formation. J. Phys. Chem. Solids 30, 2503–2510.CrossRefGoogle Scholar
  17. Fancher, D.L. and Barsch, G.R. (1971). Lattice theory of alkali halide solid solutions. III. Pressure dependence of solid solubility and spinodal decomposition. J. Phys. Chem. Solids 32,1303–1313.CrossRefGoogle Scholar
  18. Fedders, P.A. and Muller, M.V. (1984). Mixing enthalpy and composition fluctuation in ternary III-V semiconductor alloys. J. Phys. Chem. Solids 45, 685–688.CrossRefGoogle Scholar
  19. Ferreira, L.G., Mbaye, A.A., and Zunger, A. (1988). Chemical and elastic effects on isostructural phase diagrams: The ε-G approach. Phys. Rev.B37,10547–10570.Google Scholar
  20. Grimm, H.G. and Herzfeld, K.F. (1923). Uber Gitterenergie und Gitterabstand von Mischkristallen. Z. Physik, 16, 77–83.CrossRefGoogle Scholar
  21. Hietala, J. (1963a). Alkali halide solid solutions. II. Heat of formation of the sodium chloride type. Ann. Acad. Sci. Fenn.AVI, N122, 1–31.Google Scholar
  22. Hietala, J. (1963b). Alkali halide solid solutions. III. Heat of formation of the cesium chloride type. AVI, N123,1–18.Google Scholar
  23. Hovi, V. (1950). On Wasastjerna theory of the heat of formation of solid solutions. Soc. Sci. Fenn., Comment. Phys.-Math.XV, N12, 1–20.Google Scholar
  24. Iveronova, V.I. (1954). Deformations du reseau cristallique dans les solutions solides. Trudy Inst. Krist. Akad. Nauk SSSR 10, 339–347.Google Scholar
  25. Kirkinsky, V.A. and Fursenko, B.A. (1980). Estimation of thermodynamic functions of minerals of variable composition at high pressure using equations of state for end members. Phys. Earth Planet Inter. 22, 262–266.CrossRefGoogle Scholar
  26. Kleppa, O.I. and Meschel, S.V. (1965). Heats of formation of solid solutions in the system (Na-Ag)Cl and (Na-Ag)Br. J. Phys. Chem.69, 3531–3536.CrossRefGoogle Scholar
  27. Kravchuk, I.F. and Urusov, V.S. (1978). Theoretical calculations of partition coefficients of isovalent impurities with due regard for excess entropy of mixing in the solid solution and the melt. Krist. und Techn.13, 1195–1202.CrossRefGoogle Scholar
  28. Lister, M.V. and Meyers, N.F. (1958). Heats of formation of some solid solutions of alkali halides. J. Phys. Chem.62, 145–150.CrossRefGoogle Scholar
  29. Martins, J.L. and Zunger, A. (1984). Bond length around isovalent impurities in semiconductor solid solutions. Phys. Rev.B30, 6217–6220.Google Scholar
  30. Mikkelsen, J.C. and Boyce, J.B. (1983). Extended X-ray absorption fine-structure study of Ga1-xInxAs random solid solutions. Phys. Rev.B28, 7130–7140.Google Scholar
  31. Mott, N.F. and Littleton, M.J. (1938). Conduction in polar crystals. I. Electrolytic conduction in solid salts. Trans. Farad. Soc.34, part 3, 485–495.CrossRefGoogle Scholar
  32. Navrotsky, A. (1982). Trends and systematics in mineral thermodynamics. Ber. Bunsenges. Phys. Chem.86, 994–1001.Google Scholar
  33. Navrotsky, A. (1985). Crystal chemical constaints on thermochemistry of minerals. Rev. Mineral.13, 225–276.Google Scholar
  34. Navrotsky, A. (1987). Models of crystalline solutions. Rev. Mineral.17, 35–67.Google Scholar
  35. Nickels, I.E., Fineman, M.A., and Wallace, W.E. (1949). X-ray diffraction studies of sodium chloride-sodium bromide solid solutions. J. Phys. Colloid. Chem.53, 625–630.CrossRefGoogle Scholar
  36. Onuma, N., Higuchi, H., Wakita, H., and Nagasawa, H. (1968). Trace element partition between two pyroxenes and the host lava. Earth Planet. Sci. Lett.5,47–51.CrossRefGoogle Scholar
  37. Pauling, L. (1960). The Nature of the Chemical Bond. 3rd ed., Cornell Univ. Press, Ithaca, N.Y.Google Scholar
  38. Phillips, J.C. (1973). Bonds and Bands in Semiconductors, Academic Press, New York.Google Scholar
  39. Sasaki, T., Onda, T., Ito, R., and Ogasawa, N. (1986). An extended X-ray absorption fine-structure study of bond lengths in GaAs1-xPx. Jap. J. Appl. Phys.25, 231–233.CrossRefGoogle Scholar
  40. Saxena, S.K. (1973). Thermodynamics of Rock-Forming Crystalline Solutions. Springer-Verlag, Heidelberg-New York.Google Scholar
  41. Shih, C.K., Spicer, W.E., Harrison, W.A., and Sher, A. (1985). Bond-length relaxation in pseudobinary alloys. Phys. Rev.B31,1139–1144.Google Scholar
  42. Slagle, O.D. and McKinstry, H.A. (1966). The lattice parameters in the solid solution KCl-KBr. Acta Cryst.21, 1013–1015.CrossRefGoogle Scholar
  43. Srivastava, G.P. and Weaire, D. (1987). The theory of cohesive energy of solids. Adv. Phys.36, 463–517.CrossRefGoogle Scholar
  44. Stoneham, A.M. (1975). Theory of Defects in Solids. Clarendon Press, Oxford.Google Scholar
  45. Stringfellow, G.B. (1973). Calculation of regular solution interaction parameters in semiconductor solid solution. J. Phys. Chem. Solids 34, 1749–1751.CrossRefGoogle Scholar
  46. Suh, K.S. and Talwar, D.N. (1989). Bond length relaxation and thermodynamic parameter in A1-xBxC alloy semiconductors. Cryst. Latt. Def. Amorph. Matt.18, 503–509.Google Scholar
  47. Talwar, D.N., Suh, K.S., and Ting, C.S. (1987). Lattice distortions associated with isovalent defects in semiconductors. Phil. Mag.B56, 593–609.Google Scholar
  48. Urusov, V.S. (1968a). Effect of size difference on limits of isovalent substitutions. Geo-chimiya N9, 1033–1043.Google Scholar
  49. Urusov, V.S. (1968b). Covalency effects in heats of formation of inorganic solid solutions. Dokl. Akad. Nauk SSSR 181, 1185–1188.Google Scholar
  50. Urusov, V.S. (1969a). Application of Wasastjerna-Hovi theory for partly covalent solid solutions. Zh. Fiz. Chim.43, 537–540.Google Scholar
  51. Urusov, V.S. (1969b). Asymmetry of solid solution boundaries as a consequence of structure and bonding type difference of end members. Zh. Fiz. Chim.43, 3030–3033.Google Scholar
  52. Urusov, V.S. (1970). Calculations of miscibility gaps of isovalent solid solutions. Izv. Akad. Nauk SSSR, Neorg. Mater. 6, 1209–1214.Google Scholar
  53. Urusov, V.S. (1974). Energetic theory of miscribility gaps in mineral solid solutions. Fortschr. Miner.52, 141–150.Google Scholar
  54. Urusov, V.S. (1975). Energetic Crystal Chemistry. Nauka, Moscow (in Russian).Google Scholar
  55. Urusov, V.S. (1977). Theory of Isomorphous Miscibility. Nauka, Moscow (in Russian).Google Scholar
  56. Urusov, V.S. and Kravchuk, I.F. (1976). Energetic analysis and calculations of partition coefficients of isovalent impurities during crystallization of melt. Geochimiya N8,1204–1223.Google Scholar
  57. Urusov, V.S. and Kravchuk, I.F. (1978). Effect of microimpurity catching by crystal lattice defects and its geochemical role. Geochimiya N7, 963–978.Google Scholar
  58. Urusov, V.S. (1980). Energetic formulation of the problem of equilibrium cocrystallization from water solution. Geochimiya N5, 627–644.Google Scholar
  59. Urusov, V.S. and Kravchuk, I.F. (1983). Vibrational entropy of substitutional solid solutions. Cryst. Res. Technol.18, 629–636.CrossRefGoogle Scholar
  60. Urusov, V.S., Dudnikova, V.B., and Garanin, A.V. (1980). Calculations of solution energies of alkaline-earth ions in alkali halide crystals. Phys. Stat. Sol.102b, 695–703.Google Scholar
  61. Vernon, S.P. and Stearns, M.B. (1984). Extended X-ray absorption fine-structure study of Y3+ and Sr2+ impurities in CaF2. Phys. Rev.B29, 6968–6971.Google Scholar
  62. Wasastjerna, J.A. (1945). Some experimental values of the atomic scattering factor. Thermal vibrations and lattice distortions in pure and mixed crystals. Soc. Sci. Fenn., Comment. Phys.-Math.XIII, N5, 1–24.Google Scholar
  63. Wasastjerna, J.A. (1949). On the theory of the heat of formation of solid solutions. Soc. Sci. Fenn., Comment. Phys.-Math.XV, N3, 1–30.Google Scholar
  64. Wood, B.J. and Kleppa, O.J. (1981). Thermochemistry of forsterite-fayalite olivine solutions. Geochim. Cosmochim. Acta 45, 529–534.CrossRefGoogle Scholar
  65. Zen, E-an. (1956). Validity of “Vegard’s law.” Amer. Miner.41, 523–525.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • V. S. Urusov
    • 1
  1. 1.Department of Crystallography and Crystal Chemistry, Geological FacultyMoscow State UniversityMoscowRussia

Personalised recommendations