Advertisement

Equations of State of Fluids at High Temperature and Pressure (Water, Carbon Dioxide, Methane, Carbon Monoxide, Oxygen, and Hydrogen)

  • A. B. Belonoshko
  • S. K. Saxena
Part of the Advances in Physical Geochemistry book series (PHYSICAL GEOCHE, volume 10)

Abstract

The problem of calculating properties of fluids at high temperature (T) and pressure (P) remains one of the main problems of physical chemistry. More than 100 years have passed since the contemporary approach of studying a fluid state was devised (van der Waals, 1881). The comprehensive state of understanding of the fluid state was described in a review of Barker and Henderson (1976).

Keywords

Interaction Potential Monte Carlo Supercritical Fluid Simple Liquid Fluid Phase Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, M.P. and Tildesley, D.J. (1987). Computer Simulation of Liquids. Clarendon Press, Oxford.Google Scholar
  2. Babb, S.E., Robertson, S.E., and Scott, G.T. (1968). PVT properties of gases at high pressures. Final Rept., Univ. Oklahoma Res. Inst.Google Scholar
  3. Barker, J.A. and Henderson, D. (1976). What is “liquid”? Understanding the states of matter. Rev. Mod. Phys. 48(4), 587–671.CrossRefGoogle Scholar
  4. Belonoshko, A.B. (1988). Molecular dynamics simulation of water on β-quartz surface. Zh. Phis. Khimii 62(1), 118–121 (in Russian).Google Scholar
  5. Belonoshko, A.B. (1989). The thermodynamics of the aqueous carbon dioxide fluid within thin pores. Geoch. Cosm. Acta 53(10), 2581–2590.CrossRefGoogle Scholar
  6. Belonoshko, A.B. and Shmulovich, K.I. (1986). Molecular dynamics study of dense fluid in micropores. Geokhimiya (11), 1523–1534 (in Russian).Google Scholar
  7. Belonoshko, A.B. and Shmulovich, K.I. (1987). Fluid phase in thin porous media under high pressure. Doklady Akademii Nauk SSSR 295(1), 625–629 (in Russian).Google Scholar
  8. Belonoshko, A.B. and Saxena, S.K. (1991a). A molecular dynamics study of the pressure-volume-temperature properties of supercritical fluids: I. H20. Geoch. Cosmochim. Acta 55, 381–388.CrossRefGoogle Scholar
  9. Belonoshko, A.B. and Saxena, S.K. (1991b). A molecular dynamics study of the pressure-volume-temperature properties of supercritical fluids: II. CO2, CH4, CO, O2, H2. Geoch. Cosmochim. Acta. In pressGoogle Scholar
  10. Ben-Amotz, D. and Herschbach, D.R. (1990). Estimation of effective diameters for molecular fluids. J. Phys. Chem. 94, 1038–1047.CrossRefGoogle Scholar
  11. Born, M. and Oppenheimer, J.R. (1927). 1. Zur Quantentheorie der Molekeln. Ann. Phys. (Leipz) 84, 457–484.CrossRefGoogle Scholar
  12. Bottinga, Y. and Richet, P. (1981). High pressure and temperature equation of state and calculation of the thermodynamic properties of gaseous carbon dioxide. Amer. J. Sci. 281, 620–659.CrossRefGoogle Scholar
  13. Boublik, T. (1977). Progress in statistical thermodynamics applied to fluid phase. Fluid Phase Equilibria 1, 37–87.CrossRefGoogle Scholar
  14. Brown, W.B. (1987). Analytical representation of the excess thermodynamic equation of state for classical fluid mixtures of molecules interacting with α-exponential-six pair potentials up to high densities. J. Chem. Phys. 87, 566–577.CrossRefGoogle Scholar
  15. Burnham, C.W., Holloway, J.R., and Davis, N.F. (1969). Thermodynamic properties of water to 1000°C and 10,000 bars. Paper 132, Geological Society of America. Washing ton, D.C.Google Scholar
  16. Carnahan, N.F. and Starling, K.E. (1969). Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51, 635–636.CrossRefGoogle Scholar
  17. Carnahan, N.F. and Starling, K.E. (1972). Intermolecular repulsions and the equation of state for fluids. Amer. Inst. Chem. Eng. 18, 1184–1189.Google Scholar
  18. Delany, J.M. and Helgeson, H.C. (1978). Calculation of the thermodynamic consequences of dehydration in subducting oceanic crust to 100 Kb and > 800°C. Amer. J. Sci. 278, 638–686.CrossRefGoogle Scholar
  19. Dick, R.D. (1972a). Some Hugoniot data for liquid deuterium and hydrogen. Bull. Amer. Phys. Soc. 17, 1092.Google Scholar
  20. Dick, R.D. (1972b). Shock wave data for liquid hydrogen initially at 20 K. Bull. Amer. Phys. Soc., 17, 1302.Google Scholar
  21. Ferry, J.M. and Baumgartner, L. (1987). Thermodynamic models of molecular fluids at the elevated pressures and temperatures of crustal metamorphism. Rev. Mineral. 17, 325–365.Google Scholar
  22. Fiorese, G. (1980). Monte-Carlo calculations for molecular H2 in the fluid phase. J. Chem. Phys. 73, 6308–6315.CrossRefGoogle Scholar
  23. Fischer, J., Lustig, R., Breitenfelder-Manske, H. and Lemming, W. (1984). Influence of intermolecular potential parameters on orthobaric properties of fluids consisting of spherical and linear molecules. Mol. Phys. 52, 485–497.CrossRefGoogle Scholar
  24. Fuller, G.G. (1976). A modified Redlich-Kwong-Soave equation of state capable of representing the liquid state. Ind. Eng. Chem. Fundam. 15, 254–257.CrossRefGoogle Scholar
  25. Gorbaty, Yu. E. and Demjanetz, Yu. N. (1983). The pair correlation functions of water at a pressure of 1000 bar in the temperature range 25–500°C. Chem. Phys. Lett. 100, 450–453.CrossRefGoogle Scholar
  26. Grace, J.D. and Kennedy, G.C. (1967). The melting curve of five gases to 30 Kbar. J. Phys. Chem. Solids 28, 977–981.CrossRefGoogle Scholar
  27. Grevel, K.-D. (1990). A modified Redlich-Kwong equation of state for methane at temperatures between 150 K and 1500 K and pressures up to 300 Kbar, in Thermodynamic Data Systematics, Uppsala Univ. Symp., Wik, June 10–14, 1990, abstract.Google Scholar
  28. Halbach, H. and Chatterjee, N.D. (1982). An empirical Redlich-Kwong type equation of state for water to 1000°C and 200 Kbar. Contrib. Mineral. Petrol. 79, 337–345.CrossRefGoogle Scholar
  29. Hamann, S.D. (1981). Properties of electrolyte solutions at high pressures and temperatures, in Physics and Chemistry of the Earth, D.T. Rickard and F.E. Wickman, eds., Vol. 13, Oxford, pp. 89–112.Google Scholar
  30. Hill, P.G. (1990). A unified fundamental equation for the thermodynamic properties of H2O. J. Phys. Chem. Data 19, 1233–1274.CrossRefGoogle Scholar
  31. Hill, T.L. (1962). An Introduction to Statistical Thermodynamics. Addison-Wesley, Reading, Mass.Google Scholar
  32. Hollo way, J.R. (1977). Fugacity and activity of molecular species in super-critical fluids, in Thermodynamics in Geology, D.G. Fraser, ed., Dordrecht-Holland, pp. 161–181.Google Scholar
  33. Holmes, N.C., Nellis, W.J, Graham, W.B, and Walrafen, C.E. (1985). Spontaneous Raman scattering from shocked water. Phys. Rev. Lett. 55, 2433–2436.CrossRefGoogle Scholar
  34. Johnson, J.D. and Shaw, M.S. (1985). Thermodynamics using effective spherical potentials for CO2 anisotropics. J. Chem. Phys. 83, 1271–1275.CrossRefGoogle Scholar
  35. Jorgensen, W.L, Buckner, J.K., Boudon, S, and Tirado-Rives, J. (1988) Efficient computation of absolute free energy of binding by computer simulations. Application to the methane dimer in water. J. Chem. Phys. 89, 3742–3746.CrossRefGoogle Scholar
  36. Jusa, I, Kmonicek, V, and Sifner, O. (1965). Measurements of the specific volume of carbon dioxide in the range of 700 to 4000 bar and 50 to 475°C. Physica 31, 1735–1744.CrossRefGoogle Scholar
  37. Kalinichev, A.G. (1986). Monte Carlo study of the thermodynamics and structure of dense supercritical water. Internat. J. Thermophys. 7, 887–900.CrossRefGoogle Scholar
  38. Kalinichev, A.G. and Heinzinger, K. (1991). Computer simulation of aqueous fluids at high temperature and pressure, in Advance in Physical Geochemistry, S.K. Saxena, ed. Vol. 10, Springer-Verlag, New York.Google Scholar
  39. Kataoka, J. (1987). Studies of liquid water by computer simulations. V. Equation of state of fluid water with Caravetta-Clementi potential. J. Chem. Phys. 87, 589–596.CrossRefGoogle Scholar
  40. Kerrick D.M. and Jacobs G.K. (1981). A modified Redlich-Kwong equation for H2O, CO2 and H2O-CO2 mixtures at elevated pressures and temperatures. Amer. J. Sci. 281(6), 735–767.CrossRefGoogle Scholar
  41. Kortbeek, P.J, Biswas, S.N, and Trappeniers, N.J. (1986). pVT and sound velocity measurements for CH4 up to 10 kbar. Physica 139/140B, 109–112.Google Scholar
  42. Kubicki, J.D. and Lasaga, A.C. (1990). Molecular dynamics and diffusion in silicate melts, in Advances in Physical Geochemistry, J. Ganguly, ed. Vol. 8. Springer-Verlag, New York. 1–50.Google Scholar
  43. Lennard-Jones, J.E, and Ingham, A.E. (1925). On the calculation of certain crystal potential constants, and on the cubic crystal of least potential energy. Proc. Roy. Soc. 107A, 636–653.Google Scholar
  44. Luckas, M. and Lucas, K. (1989). Thermodynamic properties of fluid carbon dioxide from the SSR-MPA potential. Fluid Phase Equilibria 45, 7–23.CrossRefGoogle Scholar
  45. Lysenga, G.A., Ahrens, T.J., Nellis, W.J., and Mitchell, A.C. (1982). The temperature of shock-compressed water. J. Chem. Phys. 76, 6282–6286.CrossRefGoogle Scholar
  46. Mel’nik, Yu. P. (1972). Thermodynamic parameters of compressed gases and meta-morphic reactions involving water and carbon dioxide. Geokhimiya (6), 654–662 (in Russian).Google Scholar
  47. Mel’nik, Yu. P. (1978a). Thermodynamic properties of carbon monoxide and methane at high temperatures and pressures-a new correlation based on the principle of corresponding states. Geokhimiya (11), 1677–1691 (in Russian).Google Scholar
  48. Mel’nik, Yu. P. (1978b). Termodinamicheskiye svoistva gazov v usloviyakh glubinnogo petrogenezisa. Naukova Dumka, Kiev (in Russian).Google Scholar
  49. Mills R.L., Liebenberg J.C., Bronson J.C., and Schmidt L.C. (1977). Equation of state of fluid n-H2 from P-V-T and sound velocity measurements to 20 Kbar. J. Chem. Phys. 66, 3076–3084.CrossRefGoogle Scholar
  50. Mitchell, A.C. and Nellis, W.J. (1982). Equation of state and electrical conductivity of water shocked to the 100 GPa (1 Mbar) pressure range. J. Chem. Phys. 76, 6273–6281.CrossRefGoogle Scholar
  51. Nellis, W.J. and Mitchell, A.C. (1980). Shock compression of liquid argon, nitrogen and oxygen to 90 GPa (900 Kbar). J. Chem. Phys. 73, 6137–6145.CrossRefGoogle Scholar
  52. Nellis, W.J., Ree, F.H., van Thiel, M, and Mitchell, A.C. (1981). Shock compression of liquid carbon monoxide and methane to 90 GPa (900 kbar). J. Chem. Phys. 75, 3055–3063.CrossRefGoogle Scholar
  53. Nellis, W.J., Ross, M., Mitchell, A.C., van Thiel, M., Young, D.A., Ree, F.H., and Trainor, R.J. (1983). Equation of state for molecular hydrogen and deuterium from shock-wave experiments to 760 Kbar. Phys. Rev. A2, 608–611.Google Scholar
  54. Presnall, D.C. (1969). Pressure-volume-temperature measurements on hydrogen from 200°C to 600°C and up to 1800 atmospheres. J. Geophys. Res. 74, 6026–6033.CrossRefGoogle Scholar
  55. Radousky, H.B., Mitchell, A.C., and Nellis, W.J. (1990). Shock temperature measurements of planetary ices: NH3, CH4 and “synthetic Uranus.” J. Chem. Phys. 93, 8235–8239.CrossRefGoogle Scholar
  56. Redlich, O. and Kwong, J.N.S. (1949). On the thermodynamics of solutions: V. An equation of state. Fugacities of gaseous solutions. Chem. Rev. 44, 233–244.CrossRefGoogle Scholar
  57. Ree, F.H. (1982). Molecular interaction of dense water at high temperature. J. Chem. Phys. 76, 6287–6302.CrossRefGoogle Scholar
  58. Rice, M.H. and Walsh, J.M. (1957). Equation of state of water to 250 Kilobars. J. Chem. Phys. 26, 824–830.CrossRefGoogle Scholar
  59. Rimbach, H. and Chatterjee, N.D. (1987). Equations of state for H2, H2O, and H2-H2O fluid mixtures at temperatures above 0.01°C and at high pressures. Phys. Chem. Min. 14, 560–569.CrossRefGoogle Scholar
  60. Robertson, S.L. and Babb, S.E. Jr. (1970). Isotherms of carbon monoxide to 10 Kbar and 300°C. J. Chem. Phys. 53, 1094–1097.CrossRefGoogle Scholar
  61. Ross, M. (1987). Physics of dense fluids, in High Pressure Chemistry and Biochemistry, R. van Eldik and J. Jonas, eds., Reidel, Dordrecht, pp. 9–49.Google Scholar
  62. Ross, M. and Ree, F.H. (1980). Repulsive forces of simple molecules and mixtures at high density and temperature. J. Chem. Phys. 73, 6146–6152.CrossRefGoogle Scholar
  63. Ross, M., Ree, F.H., and Young, D.A. (1983). The equation of state of molecular hydrogen at very high density. J. Chem. Phys. 79, 1487–1494.CrossRefGoogle Scholar
  64. Saager, B., Lotfi, A., Bohn, M, Nguyen, V.N., and Fischer, J. (1990). Prediction of gas PVT data with effective intermodular potentials using the Haar-Shenker-Kohler equation and computer simulations. Fluid Phase Equilibria 54, 237–246.CrossRefGoogle Scholar
  65. Saager, B. and Fischer, J. (1990). Predictive power of effective intermolecular pair potentials: MD simulation results for methane up to 1000 MPa. Fluid Phase Equilibria 57, 35–46.CrossRefGoogle Scholar
  66. Saul, A. and Wagner, W. (1989). A fundamental equation for water covering the range from the melting line to 1273 K at pressures up to 25,000 MPa. J. Phys. Chem. Ref. Data 18(4), 1537–1563.CrossRefGoogle Scholar
  67. Saxena, S.K. and Fei, Y. (1987a). High pressure and high temperature fugacities. Geochim. Cosmochim. Acta, 51, 783–791.CrossRefGoogle Scholar
  68. Saxena, S.K. and Fei, Y. (1987b). Fluids at crustal pressures and temperatures. I. Pure species. Contrib. Mineral. Petrol. 95, 370–375.CrossRefGoogle Scholar
  69. Shmonov, V.M. and Shmulovich, K.I. (1974). Molal volumes and equations of state of CO2 at temperatures from 100 to 1,000°C and pressures from 2,000 to 10,000 bars. Akad Nauk SSSR Doklady 217, 205–209 (in Russian).Google Scholar
  70. Shmulovich, K.I. and Shmonov, V.M. (1978). Tables of Thermodynamic Properties of Gases and Liquids, Carbon Dioxide. Moscow, Standard Press (in Russian).Google Scholar
  71. Shmulovich, K.I, Tereschenko, E.N, and Kalinichev, A.G. (1982). Equation of state and isochores of nonpolar gases up to 2000 K and 10 GPa. Geokhimija (11), 1598–1613 (in Russian).Google Scholar
  72. Spiridonov, G.A. and Kvasov, I.S. (1986). Empirical and semiempirical equations of state for gases and liquids. Rev. Thermophy. Prop. Matt. 57(1), 45–116, (in Russian).Google Scholar
  73. Stillinger, F.H. and Rahman, A. (1974). Improved simulation of liquid water by molecular dynamics. J. Chem. Phys. 60, 1545–1557.CrossRefGoogle Scholar
  74. Stishov, S.M. (1974). Thermodynamics of melting of pure species. Uspekhi Fiz. Nauk 114, 3–29 (in Russian).Google Scholar
  75. Svehla, R.A. (1962). Lennard-Jones potential parameters from viscosity data. NASA Tech. R-132, Lewis Res. Ctr, Cleveland, Ohio.Google Scholar
  76. Sysoev, V.A. (1980). Isothermal equation of state for dense gases and liquids. One-component systems. Ukrainskii Phiz. Zh. 25(1), 123–130 (in Russian).Google Scholar
  77. Tait, P.S. (1889). On the virial equation for molecular forces, being Part IV. of a paper on the foundations of the kinetic theory of gases. Proc. Roy. Soc. Edin. 16, 65–72.Google Scholar
  78. Tziklis, D.S. (1977). Dense Gases. Moscow, Khimija Press (in Russian).Google Scholar
  79. Tziklis, D.S. and Koulikova, A.I. (1965). Oxygen compressibility determination at pressure to 10,000 atm and temperature to 400°C. Zh. Phiz. Khimii 39, 1752–1756 (in Russian).Google Scholar
  80. Tziklis, D.S, Maslennikova, V.Y, Gavrilov, S.D., Egorov, A.N, and Timofeeva G.V. (1975). Molar volumes and equation of state of molecular hydrogen at high pressures. Dokl. Akad. Nauk SSSR 220, 189–191 (in Russian).Google Scholar
  81. van der Waals, J.H. (1881). Die Continuitat des Gasformigen und Flussigen Zustcindes. Leipzig, Barth.Google Scholar
  82. van Thiel, M. and Wasley, M. (1964). Compressibility of liquid hydrogen to 40,000 atm and 1100 K. U.S. Atomic Energy Comm., Univ. Calif, Livermore.Google Scholar
  83. van Waveren, G.M., Michels, J.P.J, and Trappaniers, N.J. (1986). Molecular dynamics simulation of CH4 in the dense fluid phase. Physica B 139/140, 144–147.CrossRefGoogle Scholar
  84. Vasserman, A.A. and Rabinovitch, V.A. (1968). Thermophysical Properties of Liquid Air and Its Components. Moscow, Standart Press (in Russian).Google Scholar
  85. Verlet, L. (1967). Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103.CrossRefGoogle Scholar
  86. Verlet, L. (1968). Computer “experiments” on classical fluids. II. Equilibrium correlation functions. Phys. Rev. 165, 201–214.CrossRefGoogle Scholar
  87. Vukalovich, M.P., Altunin, V.V., and Timoshenko, N.I. (1963). Specific volume of CO2 at high pressure and temperature. Teploenergetika (10), 92–93 (in Russian).Google Scholar
  88. Walsh, J.M. and Rice, M.H. (1957). Dynamic compression of liquids from measurements of strong shock waves. J. Chem. Phys. 26, 815–823.CrossRefGoogle Scholar
  89. Weeks, J.D., Chandler, D., and Andersen, H.C. (1971). Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 54, 5237–5246.CrossRefGoogle Scholar
  90. Zubarev, V.N. and Telegin, G.S. (1962). Shock compressibility of liquid nitrogen and solid carbon dioxide. Doklady Akad Nauk SSSR 142, 309–312 (in Russian).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • A. B. Belonoshko
    • 1
  • S. K. Saxena
    • 2
  1. 1.Department of Mineralogy and PetrologyUppsala UniversityUppsalaSweden
  2. 2.Planetary Geochemistry ProgramInstitute of Geology Uppsala UniversityUppsalaSweden

Personalised recommendations