Skip to main content

Computer Simulations of Aqueous Fluids at High Temperatures and Pressures

  • Chapter
Book cover Thermodynamic Data

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 10))

Abstract

Water is a unique substance in many respects. It is the only chemical compound that occurs in all three physical states (solid, liquid, and vapor) under the thermodynamic conditions unique to the Earth’s surface. It has played a principal role in major natural processes during the long geological and biological history of the planet. Its oustanding properties as a solvent and its general abundance almost everywhere on our planet’s suface have made it also an integral part of many technological processes since the very beginning of human civilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlström, P., Wallqvist, A., Engström, S., and Jönsson, B. (1989). A molecular dynamics study of polarizable water. Mol. Phys. 68, 563–581.

    Article  Google Scholar 

  • Allen, M.P. and Tildesley, D.J. (1987). Computer Simulation of Liquids. Oxford University Press, New York.

    Google Scholar 

  • Alper, H.E. and Levy, R.M. (1989). Computer simulations of the dielectric properties of water: Studies of the simple point charge and transferrable intermolecular potential models. J. Chem. Phys. 91, 1242–1251.

    Article  Google Scholar 

  • Anastasiou, N., Fincham, D., and Singer, K. (1983). Computer simulation of water in contact with a rigid-ion crystal surface. J. Chem. Soc., Faraday Trans. II 79, 1639–1651.

    Article  Google Scholar 

  • Anderson, J., Ullo, J.J., and Yip, S. (1987). Molecular dynamics simulation of dielectric properties of water. J. Chem. Phys.87, 1726–1732.

    Article  Google Scholar 

  • Andrea, T.A., Swope, W.S., and Andersen, H.C. (1983). The role of long ranged forces in determining the structure and properties of liquid water. J. Chem. Phys.79, 4576–4584.

    Article  Google Scholar 

  • Barker, J.A. and Watts, R.O. (1969). Structure of water; a Monte Carlo calculation. Chem. Phys. Lett.3, 144–145.

    Article  Google Scholar 

  • Barrat, J.-L. and McDonald, I.R. (1990). The role of molecular flexibility in simulations of water. Mol. Phys.70, 535–539.

    Article  Google Scholar 

  • Belonoshko, A. and Shmulovich, K.I. (1987). A molecular dynamics study of a dense fluid in micropores. Geochem. Internat.24(6), 1–12.

    Google Scholar 

  • Belonoshko, A. and Saxena, S.K. (1991). A molecular dynamics study of the P-V-T properties of supercritical fluids: I. H2O. Geochim. Cosmochim. Acta 55, 381–387.

    Article  Google Scholar 

  • Berendsen, J.C., Postma, J.P.M., Van Gunsteren, W.F., and Hermans, J. (1981). Interaction models for water in relation to protein hydration, in Intermolecular Forces, B. Pullman, ed., Riedel, Dordrecht, pp. 331–342.

    Google Scholar 

  • Berens, P.H., Mackay, D.H.J., White, G.M., and Wilson, K.R. (1983). Thermodynamics and quantum corrections from molecular dynamics for liquid water. J. Chem. Phys.79, 2375–2389.

    Article  Google Scholar 

  • Berkowitz, M., Karim, O.A., McCammon, J.A., and Rossky, P.J. (1984). Sodium chloride ion pair interaction in water: Computer simulation. Chem. Phys. Lett.105, 577–580.

    Article  Google Scholar 

  • Beshinske, R.J. and Lietzke, M.H. (1969). Monte Carlo calculation of some thermodynamic properties of steam using a dipole-quadrupole potential. J. Chem. Phys.51, 2278–2279.

    Article  Google Scholar 

  • Beveridge, D.L., Mezei, M., Mehrotra, P.K., Marchese, F.T., Ravi-Shanker, G., Vasu, T., and Swaminathan, S. (1983). Monte Carlo computer simulation studies of the equilibrium properties and structure of liquid water, in Molecular-Based Study of Fluids, J.M. Haile and G.A. Mansoori, eds., Advances in Chemistry Series, Vol. 204, American Chemical Society, Washington, D.C., pp. 297–351.

    Chapter  Google Scholar 

  • Binder, K. and Stauffer, D. (1984). A simple introduction to Monte Carlo simulation and some specialized topics, in Applications of the Monte Carlo Method in Statistical Physics, K. Binder, ed., Topics in Current Physics, Vol. 36, Springer-Verlag, Berlin, pp. 1–36.

    Google Scholar 

  • Bondarenko, G.V. and Gorbaty, Yu. E. (1973). Infrared spectra of v 3 HDO at high pressures and temperatures. Dokl. Akad. Nauk SSSR 210, 132–135 (in Russian).

    Google Scholar 

  • Bopp, P. (1986). A study of the vibrational motions of water in an aqueous CaCl2 solution. Chem. Phys.106, 205–212.

    Article  Google Scholar 

  • Bopp, P. (1987). Molecular dynamics computer simulations of solvation in hydrogen bonded systems. Pure & Appl. Chem.59, 1071–1082.

    Article  Google Scholar 

  • Bopp, P., Jancsó, G., and Heinzinger, K. (1983). An improved potential for non-rigid water molecules in the liquid phase. Chem. Phys. Lett.98, 129–133.

    Article  Google Scholar 

  • Bounds, D.G. (1985). A molecular dynamics study of the structure of water around the ions Li+, Na+, K+, Ca++, Ni++ and Cl-. Mol. Phys.54, 1335–1355.

    Article  Google Scholar 

  • Brodholt, J. and Wood, B. (1990). Molecular dynamics of water at high temperatures and pressures. Geochim. Cosmochim. Acta 54, 2611–2616.

    Article  Google Scholar 

  • Carney, G.D., Curtiss, L.A., and Langhoff, S.R. (1976). Improved potential functions for bent AB2 molecules: water and ozone. J. Mol Spectr.61, 371–379.

    Article  Google Scholar 

  • Carravetta, V. and Clementi, E. (1984). Water-water interaction potential: An approximation of electron correlation contribution by a functional of the SCF density matrix. J. Chem. Phys.81, 2646–2651.

    Article  Google Scholar 

  • Catlow, C.R.A., Parker, S.C, and Allen, M.P., eds. (1990). Computer Modelling of Fluids, Polymers and Solids. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Clementi, E. (1985). Ab initio computational chemistry. J. Phys. Chem., 89, 4426–4436.

    Article  Google Scholar 

  • Corliss, J.B. (1990). Hot springs and the origin of life. Nature 347, 624.

    Article  Google Scholar 

  • Dang, L.X. and Pettitt, B.M. (1987). Simple intermolecular model potentials for water. J. Phys. Chem.91, 3349–3354.

    Article  Google Scholar 

  • Dang, L.X., Rice, J.E., and Kollman, P.A. (1990). The effect of water models on the interaction of the sodium-chloride ion pair in water: Molecular dynamics simulations. J. Chem. Phys.93, 7528–7529.

    Article  Google Scholar 

  • Demetros, G. and David, C.W. (1982). Polarization model for high temperature and high density water droplets. J. Chem. Phys. 77, 6340–6341.

    Article  Google Scholar 

  • De Pablo, J.J. and Prausnitz, J.M. (1989). Phase equilibria for fluid mixtures from Monte Carlo simulation. Fluid Phase Equil.53, 177–189.

    Article  Google Scholar 

  • De Pablo, J.J., Prausnitz, J.M, Strauch, H.J, and Cummings, P.T. (1990). Molecular simulation of water along the liquid-vapor coexistence curve from 25°C to the critical point. Chem. Phys.93, 7355–7359.

    Google Scholar 

  • Dudziak, K.H. and Franck, E.U. (1966). Messungen der Viskosität des Wassers bis 560°C und 3500 bar. Ber. Bunsenges. Phys. Chem.70, 1120–1128.

    Google Scholar 

  • Eugster, H.P. and Baumgartner, L. (1987). Mineral solubilities and speciation in supercritical metamorphic fluids, in Thermodynamic Modeling of Geological Materials: Minerals, Fluids and Melts, I.S.E. Carmichael and H.P. Eugster, eds. Reviews in Mineralogy Vol. 17, Mineralogical Society of America, Washington, D.C, pp. 367–403.

    Google Scholar 

  • Evans, M.W. (1986). Molecular dynamical simulation of new auto and cross correlations in liquid water. J. Mol. Liq.32, 173–181.

    Article  Google Scholar 

  • Evans, M.W, Lie, G.C, and Clementi, E. (1988). Molecular dynamics simulation of water from 10 to 1273 K. J. Chem. Phys.88, 5157–5165.

    Article  Google Scholar 

  • Ferry, J.M. and Baumgartner, L. (1987). Thermodynamic models of molecular fluids at the elevated pressures and temperatures of crustal metamorphism, in Thermodynamic Modeling of Geological Materials: Minerals, Fluids and Melts, I.S.E. Carmichael and H.P. Eugster, eds. Reviews in Mineralogy Vol. 17, Mineralogical Society of America, Washington, D.C, pp. 323–365.

    Google Scholar 

  • Franck, E.U. (1970). Water and aqueous solutions at high pressures and temperatures. Pure & Appl. Chem.24, 13–30.

    Article  Google Scholar 

  • Franck, E.U. (1981). Survey of selected non-thermodynamic properties and chemical phenomena of fluids and fluid mixtures, in Chemistry and Geochemistry of Solutions at High Temperatures and Pressures, D.T. Rickard and F.E. Wickman, eds. Physics and Chemistry of the Earth, Vol. 13/14, Pergamon Press, Oxford, pp. 65–88.

    Google Scholar 

  • Franck, E.U. (1987). Fluids at high pressures and temperatures. Pure & Appl. Chem.59, 25–34.

    Article  Google Scholar 

  • Franck, E.U. and Roth, K. (1967). Infrared absorption of HDO in water at high pressures and temperatures. Disc. Farad. Soc.43, 108–114.

    Article  Google Scholar 

  • Franks, F, ed. (1972–1982). Water. A Comprehensive Treatise, Vols. 1–7. Plenum, New York.

    Google Scholar 

  • Friedman, H.L. (1981). Electrolyte solutions at equilibrium. Ann. Rev. Phys. Chem.32, 179–204.

    Article  Google Scholar 

  • Fukushima, N., Tamura, Y., and Ohtaki, H. (1991). Dissolution of alkali fluoride and chloride crystals in water studied by molecular dynamics simulations. Z. Naturforsch. 46a, 193–202.

    Google Scholar 

  • Garofalini, S.H. (1990). Molecular dynamics computer simulations of silica surface structure and adsorption of water molecules. J. Non-Cryst. Solids 120, 1–12.

    Article  Google Scholar 

  • Geiger, A, Rahman, A, and Stillinger, F.H. (1979a). Molecular dynamics study of the hydration of Lennard-Jones solutes. J. Chem. Phys.70, 263–276.

    Article  Google Scholar 

  • Geiger, A, Stillinger, F.H, and Rahman, A. (1979b). Aspects of the percolation process for hydrogen-bond networks in water. J. Chem. Phys.70, 4185–4193.

    Article  Google Scholar 

  • Gellatly, B.J, Quinn, J.E., Barnes, P, and Finney, J.L. (1983). Two, three, and four body interactions in model water interactions. Mol. Phys.59, 949–970.

    Article  Google Scholar 

  • Gorbaty, Yu. E. (1979). Some new data on the structure of liquid and supercritical water, in Problems of Physical-Chemical Petrology, V.A. Zharikov, ed., Vol. II, Nauka, Moscow, pp. 15–24 (in Russian).

    Google Scholar 

  • Gorbaty, Yu. E. and Demianets, Yu. N. (1983). The pair-correlation functions of water at a pressure of 1000 bar in the temperature range 25–500°C. Chem. Phys. Lett.100, 450–454.

    Article  Google Scholar 

  • Gorbaty, Yu. E. and Demianets, Yu. N. (1985). An X-ray study of the effect of pressure on the structure of liquid water. Mol. Phys.55, 571–588.

    Article  Google Scholar 

  • Grivtsov, A.G., Zhuravlev, L.T., Gerasimova, G.A., and Khazin, L.G. (1988). Molecular dynamics of water: Adsorption of water on β-Tridymite. J. Colloid and Interface Sci.126, 397–407.

    Article  Google Scholar 

  • Guàrdia, E. and Padró, J.A. (1990a). Molecular dynamics simulation of ferrous and ferric ions in water. Chem. Phys.144, 353–362.

    Article  Google Scholar 

  • Guàrdia, E. and Padró, J.A. (1990b). Molecular dynamics simulation of single ions in aqueous solutions: Effects of the flexibility of the water molecules. J. Phys. Chem.914, 6049–6055.

    Article  Google Scholar 

  • Guissani, Y., Guillot, B., and Bratos, S. (1988). The statistical mechanics of the ionic equilibrium in water: A computer simulation study. J. Chem. Phys.88, 5850–5856.

    Article  Google Scholar 

  • Haar, L., Gallagher, J.S, and Kell, G.S. (1984). NBS-NRC Steam Tables. Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units. Hemisphere, Washington, D.C.

    Google Scholar 

  • Hamann, S.D. (1981). Properties of electrolyte solutions at high pressures and temperatures, in Chemistry and Geochemistry of Solutions at High Temperatures and Pressures, D.T. Rickard and F.E. Wickman, eds., Physics and Chemistry of the Earth, Vols. 13/14, Pergamon Press, Oxford, pp. 89–111.

    Google Scholar 

  • Hankins, D., Moskowitz, J.W., and Stillinger, F.H. (1970). Water molecule interactions. J. Chem. Phys.53, 4544–4554.

    Article  Google Scholar 

  • Hansen, J.P. and McDonald, I.R. (1976). Theory of Simple Liquids. Academic Press, London.

    Google Scholar 

  • Hausser, R., Maier, G., and Noack, F. (1966). Kernmagnetische Messungen von Selbstdiffusions-Koeffizienten in Wasser und Benzol bis zum kritischen Punkt. Z. Naturforsch. 21a, 1410–1415.

    Google Scholar 

  • Heinzinger, K. (1986). MD simulations of the effect of pressure on the structural and dynamical properties of water and aqueous electrolyte solutions, in Supercomputer Simulations in Chemistry, M. Dupuis, ed., Lecture Notes in Chemistry, Vol. 44, Špringer-Verlag, Berlin, pp. 261–279.

    Google Scholar 

  • Heinzinger, K. (1990). Molecular dynamics simulation of aqueous systems, in Computer Modelling of Fluids, Polymers and Solids, C.R.A. Catlow et al., eds., Kluwer Academic Publishers, Dordrecht, pp. 357–394.

    Google Scholar 

  • Heinzinger, K. and Pálinkás, G. (1985). Computer simulation of ion-solvent systems, in The Chemical Physics of Solvation, R.G. Dogonadze et al., eds., Part A, Elsevier, Amsterdam, pp. 313–353.

    Google Scholar 

  • Heinzinger, K. and Vogel, P.C. (1976). A molecular dynamics study of aqueous solutions. III. A comparison of selected alkali halides. Z. Naturforsch. 31a, 463–475.

    Google Scholar 

  • Helgeson, H.C. (1981). Prediction of the thermodynamic properties of electrolytes at high pressures and temperatures, in Chemistry and Geochemistry of Solutions at High Temperatures and Pressures, D.T. Rickard and F.E. Wickman, eds., Physics and Chemistry of the Earth, Vols. 13/14, Pergamon Press, Oxford, pp. 133–177.

    Google Scholar 

  • Hogervorst, W. (1973). Diffusion coefficients of noble-gas mixtures between 300 and 1400 K. Physics 51, 59–89.

    Google Scholar 

  • Holloway, J.R. (1987). Igneous fluids, in Thermodynamic Modeling of Geological Materials: Minerals, Fluids and Melts, I.S.E. Carmichael and H.P. Eugster, eds. Reviews in Mineral Vol. 17, Mineralogical Society of America, Washington, D.C, pp. 211–233.

    Google Scholar 

  • Holzapfel, W.B. (1969). Effect of pressure and temperature on the conductivity and ionic dissociation of water up to 100 kbar and 1000°C. J. Chem. Phys.50, 4424–4428.

    Article  Google Scholar 

  • Impey, R.W, Klein, M.L, and McDonald, I.R. (1981). Molecular dynamics study of the structure of water at high temperatures and density. J. Chem. Phys.74, 647–652.

    Article  Google Scholar 

  • Impey, R.W, Madden, P.A, and McDonald, I.R. (1983). Hydration and mobility of ions in solution. J. Phys. Chem.87, 5071–5083.

    Article  Google Scholar 

  • Jancsó, G, Bopp, P, and Heinzinger, K. (1984). Molecular dynamics study of high-density liquid water using a modified central-force potential. Chem. Phys.85, 377–387.

    Article  Google Scholar 

  • Jancsó, G, Heinzinger, K, and Bopp, P. (1985). Molecular dynamics study of the effect of pressure on an aqueous NaCl solution. Z. Naturforsch.40a, 1235–1247.

    Google Scholar 

  • Jorgensen, W.L. (1982a). Revised TIPS for simulations of liquid water and aqueous solutions. J. Chem. Phys.77, 4156–4163.

    Article  Google Scholar 

  • Jorgensen, W.L. (1982b). Convergence of Monte Carlo simulations of liquid water in the NPT ensemble. Chem. Phys. Lett.92, 405–410.

    Article  Google Scholar 

  • Jorgensen, W.L, Chandrasekhar, J, Madura, J.D, Impey, R.W, and Klein, M.L. (1983). Comparison of simple potential functions for simulating liquid water. J. Chem. Phys.79, 926–935.

    Article  Google Scholar 

  • Jorgensen, W.L. and Madura, J.D. (1985) Temperature and size dependence for Monte Carlo simulations of TIP4P water. Mol. Phys.56, 1381–1392.

    Article  Google Scholar 

  • Jorgensen, W.L, Gao, J, and Ravimohan, C. (1985). Monte Carlo simulations of alkanes in water: Hydration numbers and the hydrophobic effect. J. Phys. Chem.89, 3470–3473.

    Article  Google Scholar 

  • Kalinichev, A.G. (1985a). Convergence acceleration in the Monte Carlo studies of aqueous systems at high pressures and temperatures, in Application of Mathematical Methods to Description and Study of Physical-Chemical Equilibria, Vol. Ill Novosibirsk, SO AN SSSR, pp. 89–93 (in Russian).

    Google Scholar 

  • Kalinichev, A.G. (1985b). A Monte Carlo study of dense supercritical water. High Temp.23, 544–548.

    Google Scholar 

  • Kalinichev, A.G. (1986). Monte Carlo study of the thermodynamics and structure of dense supercritical water. Internat. J. Thermophys.7, 887–900.

    Article  Google Scholar 

  • Kalinichev, A.G. (1991a). Theoretical modeling of geochemical fluids under high-pressure, high-temperature conditions. High Press. Res.7, 378–380.

    Article  Google Scholar 

  • Kalinichev, A.G. (1991b). Monte Carlo simulations of water under supercritical conditions. I. Thermodynamic and structural properties. Z. Naturforsch. 46a 433–444.

    Google Scholar 

  • Kalinichev, A.G. (1992). Monte Carlo simulation of water under supercritical conditions. II. Convergence characteristics and the system size effects (in preparation).

    Google Scholar 

  • Kalinichev, A.G. and Heinzinger, K. (1992). Molecular dynamics of supercritical water with the flexible BJH potential (in preparation).

    Google Scholar 

  • Karim, O.A. and Haymet, A.D. (1988). The ice/water interface: A molecular dynamics simulation study. J. Chem. Phys.89, 6889–6896.

    Article  Google Scholar 

  • Kataoka, Y. (1987). Studies of liquid water by computer simulations. V. Equation of state of fluid water with Carravetta-Clementi potential. J. Chem. Phys.87, 589–598.

    Article  Google Scholar 

  • Kataoka, Y. (1989). Studies of liquid water by computer simulations. VI. Transport properties of Carravetta-Clementi water. Bull. Chem. Soc. Jpn.62, 1421–1431.

    Article  Google Scholar 

  • Kjellander, R. and Marčelja, S. (1985). Perturbation of hydrogen bonding in water near polar surfaces. Chem. Phys. Lett.120, 393–396.

    Article  Google Scholar 

  • Kong, C.L. (1973). Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones (12–6) potential and the Morse potential. J. Chem. Phys.59, 2464–2467.

    Article  Google Scholar 

  • Krynicki, K., Green, C.D., and Sawyer, D.W. (1978). Pressure and temperature dependence of self-diffusion in water. Faraday Disc. Chem. Soc.66, 199–208.

    Article  Google Scholar 

  • Kubicki, J.D. and Lasaga, A.C. (1991). Molecular Dynamics and Diffusion in Silicate Melts, in Diffusion, Atomic Ordering, and Mass Transport, J. Ganguly, ed., Advances in Physical Geochemistry, Vol. 8, Springer-Verlag, New-York, pp. 1–50.

    Google Scholar 

  • Lange, R.L. and Carmichael, I.S.E. (1990). Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility, in Modern Methods of Igneous Petrology: Understanding Magmatic Processes, J. Nicholls and J.K. Russell, eds., Review in Mineralogy, Vol. 24, Mineralogical Society of America, Washington, D.C., pp. 25–64.

    Google Scholar 

  • La Placa, S.J., Hamilton, W.C., Kamb, B., and Prakash, A. (1973). On a nearly proton-ordered structure for ice IX. J. Chem. Phys.58, 567–580.

    Article  Google Scholar 

  • Lasaga, A.C. (1990). Atomic treatment of mineral-water surface reactions, in Mineral-Water Interface Geochemistry, M.F. Hochella, Jr. and A.F. White, eds., Reviews in Mineralogy, Vol. 23, Mineralogical Society of America, Washington, D.C., pp. 17–85.

    Google Scholar 

  • Levelt Sengers, J.M.H. (1990). Thermodynamic properties of aqueous solutions at high temperatures: Needs, methods, and challenges. Internat. J. Thermophys.11, 399–415.

    Article  Google Scholar 

  • Levesque, D., Weis, J.J., and Hansen, J.P. (1984). Recent developments in the simulation of classical fluids, in Applications of the Monte Carlo Method in Statistical Physics, K. Binder, ed., Topics in Current Physics, Vol. 36, Springer-Verlag, Berlin, pp. 37–91.

    Google Scholar 

  • Lie, G.C. and Clementi, E. (1986). Molecular-dynamics simulation of liquid water with an ab initio flexible water-water interaction potential. Phys. Rev.A33, 2679–2693.

    Google Scholar 

  • Lindner, H.A. (1970). Ramanspektroskopische Untersuchungen an HDO, gelöst in H2O, an HDO in wässrigen Kaliumjodidlösungen und an reinem H2O bis 400°C und 5000 bar. Ph.D. Thesis, Karlsruhe.

    Google Scholar 

  • Madura, J.D., Pettitt, B.M., and Calef, D.F. (1988). Water under high pressure. Mol. Phys.64, 325–336.

    Article  Google Scholar 

  • Matsuoka, O., Clementi, E., and Yoshimine, M. (1976). CI study of the water dimer potential surface. J. Chem. Phys.64, 1351–1361.

    Article  Google Scholar 

  • McQuarrie, D.A. (1976) Statistical Mechanics. Harper & Row, New York.

    Google Scholar 

  • Mezei, M. and Beveridge, D.L. (1981). Monte Carlo studies of dilute aqueous solutions of Li+, Na+, K+, F-, and Cl-. J. Chem. Phys.74, 6902–6910.

    Article  Google Scholar 

  • Mills M.F., Reimers, J.R., and Watts, R.O. (1986). Monte Carlo simulation of the OH stretching spectrum of solutions of KC1, KF, LiCl and LiF in water. Mol Phys.57, 777–791.

    Article  Google Scholar 

  • Morse, M.D. and Rice, S.A. (1982). Tests of effective pair potentials for water: Predicted ice structures. J. Chem. Phys.76, 650–660.

    Article  Google Scholar 

  • Motakabbir, K.A. and Berkowitz, M.L. (1991). Liquid-vapor interface of TIP4P water: Comparison between a polarizable and a nonpolarizable model. Chem. Phys. Lett.176, 61–66.

    Article  Google Scholar 

  • Mountain, R.D. (1989). Molecular dynamics investigation of expanded water at elevated temperatures. J. Chem. Phys.90, 1866–1870.

    Article  Google Scholar 

  • Nakahara, M, Zenke, M., Ueno, M., and Shimizu, K. (1985). Solvent isotope effect on ion mobility in water at high pressure. Conductance and transference number of potassium chloride in compressed heavy water. J. Chem. Phys.83, 280–287.

    Article  Google Scholar 

  • Neumann, M. (1986). Dielectric relaxation in water. Computer simulations with the TIP4P potential. J. Chem. Phys.85, 1567–1580.

    Article  Google Scholar 

  • Okazaki, S, Nakanishi, K, Touhara, H, Watanabe, N, and Adachi, Y. (1981). A Monte Carlo study on the size dependence in hydrophobic hydration. J. Chem. Phys.74, 5863–5871.

    Article  Google Scholar 

  • O’Shea, S.F. and Tremaine, P.R. (1980). Thermodynamics of liquid and supercritical water to 900°C by a Monte Carlo method. J. Phys. Chem.84, 3304–3306.

    Article  Google Scholar 

  • Owicki, J.C. and Scheraga, H.A. (1977). Monte Carlo calculations in the isothermal-isobaric ensemble. 1. Liquid water. J. Amer. Chem. Soc.99, 7403–7412.

    Article  Google Scholar 

  • Pálinkás, G, Riede, W.O, and Heinzinger, K. (1977). A molecular dynamics study of aqueous solutions. VII. Improved simulation and comparison with X-ray investigations of a NaCl solution. Z. Naturforsch. 32a, 1137–1145.

    Google Scholar 

  • Pálinkás, G, Bopp, P, Jancsó, G, and Heinzinger, K. (1984). The effect of pressure on the hydrogen bond structure of liquid water. Z. Naturforsch. 39a, 179–185.

    Google Scholar 

  • Panagiotopoulos, A.Z. (1987). Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol. Phys.61, 813–826.

    Article  Google Scholar 

  • Pangali, C., Rao, M., and Berne, B.J. (1979). A Monte Carlo simulation of the hydrophobic interaction. J. Chem. Phys.71, 2975–2981.

    Article  Google Scholar 

  • Pangali, C., Rao, M., and Berne, B.J. (1980). A Monte Carlo study of structural and thermodynamic properties of water: Dependence on the system size and on the boundary conditions. Mol. Phys.40, 661–680.

    Article  Google Scholar 

  • Persikov, E.S, Zharikov, V.A, Bukhtiyarov, P.G., and Pol’skoy S.F. (1990). The effect of volatiles on the properties of magmatic melts. Eur. J. Mineral.2, 621–642.

    Google Scholar 

  • Pitzer, K.S. (1987). A thermodynamic model for aqueous solutions of liquid-like density, in Thermodynamic Modeling of Geological Materials: Minerals, Fluids and Melts, I.S.E. Carmichael and H.P. Eugster, eds., Review Mineral, Vol. 17, Mineralogical Society of America, Washington, D.C., pp. 97–142.

    Google Scholar 

  • Rahman, A. and Stillinger, F.H. (1971). Molecular dynamics study of liquid water. J. Chem. Phys.55, 3336–3359.

    Article  Google Scholar 

  • Rami Reddy, M. and Berkowitz, M. (1987). Structure and dynamics of high-pressure TIP4P water. J. Chem. Phys.87, 6682–6686.

    Article  Google Scholar 

  • Rapaport, D.C. and Scheraga, H.A. (1982). Hydration of inert solutes. A molecular dynamics study. J. Phys. Chem.86, 873–880.

    Article  Google Scholar 

  • Ratcliffe, C.I. and Irish, D.E. (1982). Vibrational spectral studies of solutions at elevated temperatures and pressures. 5. Raman studies of liquid water up to 300°C. J. Phys. Chem.86, 4897–4905.

    Article  Google Scholar 

  • Ree, F.H. (1982). Molecular interaction of dense water at high temperature. J. Chem. Phys.76, 6287–6302.

    Article  Google Scholar 

  • Reimers, J.R., Watts, R.O., and Klein, M.L. (1982). Intermolecular potential functions and the properties of water. Chem. Phys.64, 95–114.

    Article  Google Scholar 

  • Reimers, J.R. and Watts, R.O. (1984). The structure, thermodynamic properties and infrared spectra of liquid water and ice. Chem. Phys.91, 201–223.

    Article  Google Scholar 

  • Robinson, R.A. and Stokes, R.H. (1955). Electrolyte Solutions. Butterworths, London.

    Google Scholar 

  • Roedder, E. (1981). Natural occurence and significance of fluids indicating high pressure and temperature, in Chemistry and Geochemistry of Solutions at High Temperatures and Pressures, D.T. Rickard and F.E. Wickman, eds., Physics and Chemistry of the Earth, Vols. 13/14, Pergamon Press, Oxford, pp. 9–39.

    Google Scholar 

  • Roth, K.H. (1969). Die Infrarotabsorption von HDO in H2O und der Zustand des Wassers bis 500°C und 4000 bar. Ph.D. Thesis, Karlsruhe.

    Google Scholar 

  • Ruff, I. and Diestler, D.J. (1990). Isothermal-isobaric molecular dynamics simulation of liquid water. J. Chem. Phys.93, 2032–2042.

    Article  Google Scholar 

  • Saul, A. and Wagner, W. (1989) A fundamental equation for water covering the range from the melting line to 1273 K at pressures up to 25,000 MPa. J. Phys. Chem. Ref. Data 18, 1537–1564.

    Article  Google Scholar 

  • Sceats, M.G. and Rice, S.A. (1980). The water-water pair potential near the hydrogen bonded equilibrium configuration. J. Chem. Phys.72, 3236–3247.

    Article  Google Scholar 

  • Schaink, H. and Hoheisel, C. (1990). Structural and dynamical behaviour of model fluids at high and low densities. J. Chem. Phys.93, 2754–2761.

    Article  Google Scholar 

  • Schwendinger, M.G. and Rode, B.M. (1989). A Monte Carlo simulation of a supersaturated sodium chloride solution. Chem. Phys. Lett. 155, 527–532.

    Article  Google Scholar 

  • Shmulovich, K.I., Mazur, V.A., Kalinichev, A.G., and Khodorevskaya, L.I. (1980a). P-V-T and component activity-concentration relations for systems of H2O-nonpolar gas type. Geochem. Internat.17(6), 18–31.

    Google Scholar 

  • Shmulovich, K.I, Shmonov, V.M, Mazur, V.A, and Kalinichev, A.G. (1980b). P-V-T and activity-concentration relations in the H2O-CO2 system. Geochem. Internat.17(6), 123–139.

    Google Scholar 

  • Shmulovich, K.I, Shmonov, V.M, and Zharikov, V.A. (1982a). The thermodynamics of supercritical fluid systems, in Advances in Physical Geochemisitry, S.K. Saxena, ed. Vol. 2, Springer-Verlag, New York, pp. 173–190.

    Google Scholar 

  • Shmulovich, K.I, Tereshchenko, E.N, and Kalinichev, A.G. (1982b). The equation of state and isochores for nonpolar gases up to 2000 K and 10 GPa. Geochem. Internat. 19(6), 49–64.

    Google Scholar 

  • Soper, A.K. and Phillips, M.G. (1986). A new determination of the structure of water at 25°C. Chem. Phys.107, 47–60.

    Article  Google Scholar 

  • Spohr, E. and Heinzinger, K. (1988). Computer simulations of water and aqueous solutions at interfaces. Electrochimica Acta 33, 1211–1222.

    Article  Google Scholar 

  • Spohr, E. Pálinkás, G, Heinzinger, K, Bopp, P, and Probst, M.M. (1988). Molecular dynamics study of an aqueous SrCl2 solution. J. Phys. Chem.92, 6754–6761.

    Article  Google Scholar 

  • Sprik, M. and Klein, M.L. (1988). A polarizable model for water using distributed charge sites. J. Chem. Phys. 89, 7556–7560.

    Article  Google Scholar 

  • Stillinger, F.H. (1980). Water revisited. Science 209, 451–457.

    Article  Google Scholar 

  • Stillinger, F.H. and David, C.W. (1978). Polarization model for water and its ionic dissociation products. J. Chem. Phys. 69, 1473–1484.

    Article  Google Scholar 

  • Stillinger, F.H. and Rahman, A. (1972). Molecular dynamics study of temperature effects on water structure and kinetics. J. Chem. Phys.57, 1281–1292.

    Article  Google Scholar 

  • Stillinger, F.H. and Rahman, A. (1974a). Improved simulation of liquid water by molecular dynamics. J. Chem. Phys. 60, 1545–1557.

    Article  Google Scholar 

  • Stillinger, F.H. and Rahman, A. (1974b). Molecular dynamics study of liquid water under high compression. J. Chem. Phys.61, 4973–4980.

    Article  Google Scholar 

  • Stillinger, F.H. and Rahman, A. (1978). Revised central force potentials for water. J. Chem. Phys. 68, 666–670.

    Article  Google Scholar 

  • Sverjensky, D.A. (1987). Calculation of the thermodynamic properties of aqueous species and the solubilities of minerals in supercritical electrolyte solutions, in Thermodynamic Modeling of Geological Materials: Minerals, Fluids and Melts, I.S.E. Carmichael and H.P. Eugster, eds. Reviews in Mineral Vol. 17, Mineralogical Society of America, Washington, D.C, pp. 177–209.

    Google Scholar 

  • Swope, W.C. and Andersen, H.C. (1984). A molecular dynamics method for calculating the solubility of gases in liquids and the hydrophobic hydration of inert-gas atoms in aqueous solution. J. Phys. Chem. 88, 6548–6556.

    Article  Google Scholar 

  • Szász, G.I, Heinzinger, K, and Riede, W.O. (1981). Structural properties of an aqueous LiI solution derived from a molecular dynamics simulation. Z. Naturforsch.36a, 1067–1075.

    Google Scholar 

  • Szász, G.I. and Heinzinger, K. (1983a). Hydration shell structures in LiI solution at elevated temperature and pressure: A molecular dynamics study. Earth Planet. Sci. Lett.64, 163–167.

    Article  Google Scholar 

  • Szász, G.I. and Heinzinger, K. (1983b). A molecular dynamics study of the translational and rotational motions in an aqueous LiI solution. J. Chem. Phys.79, 3467–3473.

    Article  Google Scholar 

  • Tamura, Y., Tanaka, K., Spohr, E., and Heinzinger, K. (1988). Structural and dynamical properties of an LiCl-3H2O solution. Z. Naturforsch.43a, 1103–1110.

    Google Scholar 

  • Tanaka, K. (1975). Measurements of self-diffusion coefficients of water in pure water and in aqueous electrolyte solutions. J. Chem. Soc., Faraday Trans. I 71, 1127–1131.

    Article  Google Scholar 

  • Tanaka, H. and Ohmine, I. (1987). Large local energy fluctuations in water. J. Chem. Phys.87, 6128–6139.

    Article  Google Scholar 

  • Tanger, J.C. and Pitzer, K.S. (1989). Calculation of the ionization constant of H2O to 2273 K and 500 MPa. AIChE J.35, 1631–1638.

    Article  Google Scholar 

  • Teleman, O., Jönsson, B., and Engström, S. (1987). A molecular dynamics simulation of a water model with intramolecular degrees of freedom. Mol. Phys.60, 193–203.

    Article  Google Scholar 

  • Tivey, M.K., Olson, L.O., Miller, V.W., and Light, R.D. (1990). Temperature measurements during initiation and growth of a black smoker chimney. Nature 346, 51–54.

    Article  Google Scholar 

  • Tödheide, K. (1982). Hydrothermal solutions. Ber. Bunsenges. Phys. Chem. 86, 1005–1016.

    Google Scholar 

  • Toukan, K. and Rahman, A. (1985). Molecular dynamics study of atomic motions in water. Phys. Rev.B31, 2643–2648.

    Google Scholar 

  • Valyashko, V.M. (1977). Studies of water-salt systems at elevated temperatures and pressures. Ber. Bunsenges. Phys. Chem.81, 388–396.

    Google Scholar 

  • Valyashko, V.M. (1990). Sub- and supercritical equilibria in aqueous electrolyte solutions. Pure & Appl Chem. 62, 2129–2138.

    Article  Google Scholar 

  • Von Damm, K.L. (1990). Seafloor hydrothermal activity: Black smoker chemistry and chimneys. Ann. Rev. Earth Planet. Sci.18, 173–204.

    Article  Google Scholar 

  • Weingärtner, H. (1982). Self-diffusion in liquid water. A reassessment. Z. Phys. Chem. N.F.132, 129–149.

    Google Scholar 

  • Wood, D.W. (1979). Computer simulations of water and aqueous solutions, in Water. A Comprehensive Treatise, F. Franks, ed., Vol. 6, Plenum, New York, pp. 279–409.

    Google Scholar 

  • Woolley, H.W. (1980). Thermodynamic properties for H2O in the ideal gas state, in Water and Steam, J. Straub and K. Scheffler, eds., Pergamon, Oxford, pp. 166–175.

    Google Scholar 

  • Zakirov, I.V. and Kalinichev, A.G. (1980). Dependence of the nonideality of homogeneous gaseous mixtures on critical temperatures of components. Dokl. Akad. Nauk SSSR 253, 1214–1216 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Kalinichev, A.G., Heinzinger, K. (1992). Computer Simulations of Aqueous Fluids at High Temperatures and Pressures. In: Saxena, S.K. (eds) Thermodynamic Data. Advances in Physical Geochemistry, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2842-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2842-4_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7692-0

  • Online ISBN: 978-1-4612-2842-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics