Skip to main content

The Electrophysiology of the Cerebellar Purkinje Cell Revisited

  • Chapter
The Cerebellum Revisited

Abstract

The electrophysiological properties of mammalian Purkinje cells has been a subject of study for more than 30 years (Eccles et al, 1967) and has produced a wealth of information relating to the ionic conductances in mammalian central neurons (cf. Llinás, 1988). Yet it is clear from the many examples of intracellular recordings obtained in vivo that the Purkinje cell is capable of many functional states. Such complexity is the expected product of the rich intrinsic electrical properties of these cellular elements and of the wealth of synaptic connectivity they receive. Indeed, if we consider that the tertiary spiny branchlets of mammalian Purkinje cells are contacted by many as 200,000 parallel fibers (Fox and Barnard, 1957; Fox et al, 1967) and that, unlike other central nervous system (CNS) spines (Peters et al, 1976), only one parallel fiber synapse is made onto each spine head (Paley and Chan-Paley, 1974), a large variation of dendritic-input patterns and thus, an enormous variability in the activation states, may be expected. Equally surprising is the other main synaptic input, the climbing-fiber system. In most adult cells only one climbing-fiber afferent contacts a given Purkinje cell. The contacts are made on groups of postsynaptic spines arising from the smooth surface of the primary and secondary dendrites (Larramendi and Victor, 1967). Clusters of six to eight spines are often organized in longitudinal rows along the dendrite and are contacted by en passant enlargements of the climbing fiber as it progresses over the surface of the dendrites. As many as 300 spines are contacted by a single afferent fiber (Llinas et al, 1969). Given this structure, it is not surprising that a stereotyped synaptic response to climbing fiber activity, the complex spike, is observed at all levels of cerebellar phylogeny (Llinas and Hillman, 1969).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, P., Eccles, J.C, and Voorhoeve, P.E. (1964): Postsynaptic inhibition of cerebellar Purkinje cells. J. Neurophysiol, 27, 1138–1153.

    PubMed  CAS  Google Scholar 

  • Angelides, K. (1981): Fluorescent and photoactivatable fluorescent derivatives of tetrodotoxin to probe the sodium channel of excitable membranes. Biochemistry, 20,4107–4118.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M.J., and Irvine, R.F. (1984): Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature, 312, 315–321.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M.J., and Irvine, R.F. (1989): Inositol phosphates and cell signalling. Nature, 341, 197–205.

    Article  PubMed  CAS  Google Scholar 

  • Blackstone, CD., Supattapone, S., and Snyder, S.H. (1989): Inositol phospholipid-linked glutamate re-ceptors mediate cerebellar parallel-fiber-Purkinje-cell synaptic transmission. Proc. Natl. Acad. Sci. USA, 86, 4316–4320.

    Article  PubMed  CAS  Google Scholar 

  • Cherksey, B., Lin, J.-W., Sugimori, M., and Llinás, R. (1989): Further studies on the P type calcium channel in lipid bilayers and on the nature of FTX calcium channel blocker. Soc. Neurosci. Abst., 14, 652.

    Google Scholar 

  • Eccles, J.C, Ito, M., and Szentgothai, J. (1967): The Cerebellum as a Neuronal Machine. New York: Springer-Verlag.

    Google Scholar 

  • Eccles, J.C, Llinás, R., and Sasaki, K. (1966a): The excitatory synaptic action of climbing fibers on the Purkinje cells of the cerebellum. J. Physiol, 182, 268–296.

    PubMed  CAS  Google Scholar 

  • Eccles, J.C, Llinás, R., and Sasaki, K. (1966b): Parallel fibre stimulation and responses induced thereby in the Purkinje cells of the cerebellum. Exp. Brain Res. 1, 17–39.

    PubMed  CAS  Google Scholar 

  • Ferris, CD, Huganir, R.L, Supattapone, S, and Snyder, S.H. (1989): Purified inositol 1,4,5-trisphos-phate receptor mediates calcium flux in reconstituted lipid vesicles. Nature, 342, 87–89.

    Article  PubMed  CAS  Google Scholar 

  • Fox, C.A, and Barnard, J.W. (1957): A quantitative study of the Purkinje cell dendritic branchlets and their relationship to afferent fibers. J. Anat., 91, 299–313.

    PubMed  CAS  Google Scholar 

  • Fox, C.A, Hillman, D, and Siegesmund, K.A. (1967): The primate cerebellar cortex: A Golgi and electron microscopical study. Prog. Brain Res., 25, 174–225.

    Article  PubMed  CAS  Google Scholar 

  • Gahwiler, B.H, and Llano, I. (1989): Sodium and potassium conductances in somatic membranes of rat Purkinje cells from organotypic cerebellar cultures. J. Physiol. (Lond.), 417, 105–12.

    CAS  Google Scholar 

  • Hillman, D, Chen, S, Aung, T.T, Cherksey, B, Sugimori, M, and Llinas, R.R. (1991): Localization ofP-type calcium channels in the central nervous system. Proc. Natl. Acad. Sci. USA, 88, 7076–7080.

    Article  PubMed  CAS  Google Scholar 

  • Larramendi, L.M.H, and Victor, T. (1967): Synapses on spines of the Purkinje cell of the mouse. An electron microscopic study. Brain Res., 5, 15–30.

    CAS  Google Scholar 

  • Llano, I, Leresche, N, and Marty, A. (1991): Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents. Neuron, 6, 565–574.

    Article  PubMed  CAS  Google Scholar 

  • Llinás, R. (1982): General discussion. Radial connectivity in the cerebellar cortex: A novel view regarding the functional organization of the molecular layer. Exp. Brain Res. Suppl, 6, 189–194.

    Google Scholar 

  • Llinás, R. (1988): The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science, 242,1654–1664.

    Article  PubMed  Google Scholar 

  • Llinás, R, Bloedel, J.R, and Hillman, DE. (1969): Functional characterization of neuronal circuitry of frog cerebellar cortex. J. Neurophysiol, 32,847–870.

    PubMed  Google Scholar 

  • Llinás, R, and Hess, R. (1976): Tetrodotoxin-resistant dendritic spikes in avian Purkinje cells. Proc. Natl. Acad. Sci., 73, 2520–2523.

    Article  PubMed  Google Scholar 

  • Llinás, R, and Hillman, D.E. (1969): Physiological and morphological organization of the cerebellar circuits in various vertebrates. In Llinás, R. (ed.): Neurobiology of Cerebellar Evolution and Development. Chicago: American Medical Association Education and Research Foundation, pp. 43–73.

    Google Scholar 

  • Llinás, R, and Muhlethaler, M. (1988): Electrophysiological of guinea pig cerebellar nuclear cells in the in vitro, brainstem-cerebellar preparation. J. Physiol. (Lond), 404, 241–258.

    Google Scholar 

  • Llinás, R, and Nicholson, C. (1971): Electrophysiological properties of dendrites and somata in alligator Purkinje cells. J. Neurophysiol, 34, 532–551.

    PubMed  Google Scholar 

  • Llinás, R, Nicholson, C, Freeman, J.A, and Hillman, D.E. (1968): Dendritic spikes and their inhibition in alligator Purkinje cells. Science, 160, 1132–1135.

    Article  PubMed  Google Scholar 

  • Llinás, R, and Sasaki, K. (1989): The functional organization of the olivo-cerebellar system as examined by multiple Purkinje cell recordings. Eur. J. Neurosci., 1, 587–602.

    Article  PubMed  Google Scholar 

  • Llinás, R, and Sugimori, M. (1980a): Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol. (Lond.), 305, 171–195.

    Google Scholar 

  • Llinás, R, and Sugimori, M. (1980b): Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol. (Lond.), 305, 197–213.

    Google Scholar 

  • Llinás, R, Sugimori, M, Lin, J-W, and Cherksey, B. (1989): Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc. Natl. Acad. Sci. USA, 86, 1689–1693.

    Article  PubMed  Google Scholar 

  • Llinás, R, Sugimori, M, and Walton, K. (1977): Calcium dendritic spikes in the mammalian Purkinje cells. Soc. Neurosci. Abst., 3, 58.

    Google Scholar 

  • Llinás, R.R, and Simpson, J.I. (1981): Cerebellar control of movement. In A.L. Towe, and E.S. Luschei, (eds.): Handbook of Behavioral Neurobiology. New York: Plenum Publishing Corporation, pp. 231–302.

    Google Scholar 

  • Miller, R.J. (1987): Multiple calcium channels and neuronal function. Science, 235, 46–52.

    Article  PubMed  CAS  Google Scholar 

  • Nahorski, S.R, Kendall, D.A, and Batty, I. (1986): Receptors and phosphoinositide metabolism in the central nervous system. Biochem. Pharmacol., 35, 2447–2453.

    Article  PubMed  CAS  Google Scholar 

  • Napper, R.M, and Harvey, R.J. (1988): Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. J. Comp. Neurol., 274, 168–177.

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y. (1984): The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature, 308, 693–698.

    Article  PubMed  CAS  Google Scholar 

  • Nowycky, M.C, Fox, A.P, and Tsien, R.W. (1985): Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature, 316, 440–443.

    Article  PubMed  CAS  Google Scholar 

  • Oscarrson, O, and Sjolund, B. (1977a): The ventral spino-cerebellar system in the cat. I. Identification of five paths and their termination in the cerebellar anterior lobe. Exp. Brain Res., 28, 469–486.

    Google Scholar 

  • Oscarrson, O, and Sjolund, B. (1977b): The ventral spino-cerebellar system in the cat. III. Functional characterization of the five paths. Exp. Brain Res., 28, 505–520.

    Google Scholar 

  • Paley, S.L, and Chan-Paley, V. (1974): Cerebellar Cortex, Cytology and Organization. New York: Springer-Verlag.

    Book  Google Scholar 

  • Peters, A., Paley, S.L., and Webster, H.D.F. (1976): The Fine Structure of the Nervous System. Philadelphia: WB Saunders.

    Google Scholar 

  • Ramón y Cajal, S. (1904): Histologie du Systeme Nerveux de L’Homme et des Vertebrates. Madrid: Instituto Ramón y Cajal.

    Google Scholar 

  • Ross, C.A., Meldolesi, J., Milner, T.A., Satoh, T., Supattapone, S., and Snyder, S.H. (1989): Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature, 339, 468–470.

    Article  PubMed  CAS  Google Scholar 

  • Ross, W.N., and Werman, R. (1987): Mapping calcium transients in the dendritis of Purkinje cells from the guinea-pig cerebellum in vitro. J. Physiol. (Lond.), 389,319–336.

    CAS  Google Scholar 

  • Shambes, G.M., Gibson, J.M., and Welker, W. (1978): Fractured somatopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav. Evol., 15, 94–140.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, F.R., Gonzalez, M.F., Sharp, J.W., and Sagar, S.M. (1989): c-fos expression and (14C) 2-deoxyglucose uptake in the caudal cerebellum of the rat during motor/sensory cortex stimulation. J. Comp. Neurol., 284, 621–636.

    Article  PubMed  CAS  Google Scholar 

  • Sugimori, M., and Llinás, R. (1985): Direct demonstration of dendritic inhibition in cerebellar purkinje cells in-vitro. Soc. Neurosci. Abst., 11, 689.

    Google Scholar 

  • Sugimori, M., and Llinás, R. (1990a): Fura-2 imaging of intracellular calcium transients in Purkinje cells following glutamate iontophoresis. Soc. Neurosci. Abst., 16, 894.

    Google Scholar 

  • Sugimori, M., and Llinás, R.R. (1990b): Real-time imaging of calcium influx in mammalian cerebellar Purkinje cells in vitro. Proc. Natl. Acad. Set, 87, 5084–5088.

    Article  CAS  Google Scholar 

  • Sugimori, M., Llinás, R., and Angelides, K. (1986): Fluorescence localization of tetrodotoxin receptors in mammalian cerebellar cortex in vitro. Soc. NeuroSci. Abst., 12, 463.

    Google Scholar 

  • Supattapone, S., Worley, P.F., Baraban, J.M., and Snyder, S.H. (1988): Solubilization, purification, and characterization of an inositol trisphosphate receptor. J. Biol. Chem., 263, 1530–1534.

    PubMed  CAS  Google Scholar 

  • Tank, D.W., Sugimori, M., Connor, J.A., and Llinás, R.R. (1988): Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science, 242, 773–777.

    Article  PubMed  CAS  Google Scholar 

  • Terzuolo, C.A., and Araki, T. (1961): An analysis of intraverses extracellular potential changes associated with activity in single spinal motoneurons. Ann N.Y. Acad. Sci., 94, 547–558.

    Article  PubMed  CAS  Google Scholar 

  • Tsien, R.Y., and Poeni, M. (1986): Fluorescence ratio imaging: A new window into intracellular ionic signalling. TIBS, 11, 450–455.

    CAS  Google Scholar 

  • Usowicz, M.M., Sugimori, M., and Llinás, R.R. (1991): Elementary properties of calcium channels in cerebellar Purkinje cells. Soc. Neurosci. Abst., 17, 342.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Llinás, R.R., Sugimori, M. (1992). The Electrophysiology of the Cerebellar Purkinje Cell Revisited. In: Llinás, R., Sotelo, C. (eds) The Cerebellum Revisited. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2840-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2840-0_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7691-3

  • Online ISBN: 978-1-4612-2840-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics