Skip to main content

Light and Electron Microscopic Immunocytochemistry of Putative Neurotransmitter Amino Acids in the Cerebellum with Some Observations on the Distribution of Glutamine

  • Chapter
The Cerebellum Revisited

Abstract

Ramón y Cajal (1888, 1889) was the first to describe accurately the different cell types in the cerebellum and their interconnections. With the development of the electron microscope, the ultra-structural features of the different types of cells and synapses were soon characterized in great detail, so that today the synaptology of the cerebellar cortex must be regarded as well established (Mugnaini, 1972; Palay and Chan-Palay, 1974). In contrast, our understanding of the chemical nature of the cerebellar circuitries is still incomplete. Early biochemical studies and investigations based on immunocytochemistry of the gamma-aminobutyric acid (GABA) synthesizing enzyme, glutamic acid decarboxylase (GAD), strongly suggested that amino acids played major roles as transmitters in the cerebellum, as in other parts of the central nervous system (CNS) (for reviews see Mugnaini and Oertel, 1985; Ottersen and Storm-Mathisen, 1984a). However, it was not until recently that the neuroactive amino acids themselves could be visualized by immunocytochemistry (Storm-Mathisen et al, 1983), thus becoming amenable to precise anatomical analysis. In this chapter we show how amino acid immunocytochemistry has provided new insight in the organization of the amino acid transmitter systems in the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Araki, T., Yamano, M., Murakami, T., Wanaka, A., Betz, H, and Tohyama, M. (1988): Localization of glycine receptors in the rat central nervous system: An immunocytochemical analysis using monoclonal antibody. Neuroscience, 25, 613–624.

    Article  PubMed  CAS  Google Scholar 

  • Beitz, A.J, Larson, A.A, Monaghan, P, Altschuler, R.A, Mullett, M.M, and Madl, J.E. (1986): Immunohistochemical localization of glutamate, glutamine and aspartate aminotransferase in neurons of the pontine nuclei of the rat. Neuroscience, 17,741–753.

    Article  PubMed  CAS  Google Scholar 

  • Benjamin, A.M., and Quastel, J.H. (1972): Locations of amino acids in brain slices from the rat. Tetrodotoxin-sensitive release of amino acids. Biochem. J, 128, 631–646.

    CAS  Google Scholar 

  • Blackstad, T.W, Karagülle, T, and Ottersen, O.P. (1990): MORFOREL, a computer program for two-dimensional analysis of micrographs of biological specimens, with emphasis on immunogold preparations. Comput. Biol. Med., 20, 15–34.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, H.F, Ward, H.K, and Thomas, A.J. (1978): Glutamine—a major substrate for nerve endings. J. Neurochem., 30, 1453–1459.

    Article  PubMed  CAS  Google Scholar 

  • Campistron, G, Buijs, R.M, and Geffard, M. (1986a): Glycine neurons in the brain and spinal cord. Antibody production and immunocytochemical localization. Brain Res., 376, 400–405.

    CAS  Google Scholar 

  • Campistron, G, Geffard, M, and Buijs, R.M. (1986b): Immunological approach to the detection of taurine and immunocytochemical results. J. Neurochem., 46, 862–868.

    Article  PubMed  CAS  Google Scholar 

  • Campistron, G, Buijs, R.M, and Geffard, M. (1986c): Specific antibodies against aspartate and their immunocytochemical application in the rat brain. Brain Res., 365, 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Cavallini, D, Scandurra, R, Dupré, S, Santoro, L, and Barra, D. (1976): A new pathway of taurine biosynthesis. Physiol. Chem. Physics, 8, 157–160.

    CAS  Google Scholar 

  • Chan-Palay, V, Palay, S.L, and Wu, J.-Y. (1982): Sagittal cerebellar microbands of taurine neurons: Immunocytochemical demonstration by using antibodies against the taurine-synthesizing enzyme cysteine sulfinic acid decarboxylase. Proc. Natl. Acad. Sci., 79, 4221–4225.

    Article  PubMed  CAS  Google Scholar 

  • Cuénod, M., Do, K.Q., Vollenweider, F., Klein, A., and Streit, P. (1989): The puzzle of the transmitters in the climbing fibers. In: Experimental Brain Research Series (Symposium on The Olivocerebellar System in Motor Control, Turin). Berlin: Springer.

    Google Scholar 

  • Cummings, S, Sharp, B, and Elde, R. (1988): Corticotropin-releasing factor in cerebellar afferent systems: A combined immunocytochemistry and retrograde transport study. J. Neurosci., 8,543–554.

    PubMed  CAS  Google Scholar 

  • Dale, N, Ottersen, O.P, Roberts, A, and Storm-Mathisen, J. (1986): Inhibitory neurones of a motor pattern generator in Xenopus revealed by antibodies to glycine. Nature (Lond.), 324, 255–257.

    Article  CAS  Google Scholar 

  • Do, K.Q, Mattenberger, M, Streit, P, and Cuénod, M. (1986): In vitro release of endogenous excitatory sulfur-containing amino acids from various rat brain regions. J. Neurochem., 46, 779–786.

    Article  PubMed  CAS  Google Scholar 

  • Domenici, L, Waldvogel, HJ, Matute, C, and Streit, P. (1988): Distribution of GABA-like immuno-reactivity in the pigeon brain. Neuroscience, 25, 931–950.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum, F. (1984): Glutamate: A transmitter in mammalian brain. J. Neurochem., 42, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum, F, Storm-Mathisen, J, and Walberg, F. (1970): Glutamate decarboxylase in inhibitory neurons. A study of the enzyme in Purkinje cell axons and boutons in the cat. Brain Res., 20, 259–275.

    CAS  Google Scholar 

  • Fonnum, F, and Walberg, F. (1973): An estimation of the concentration of y-aminobutyric acid and glutamate decarboxylase in the inhibitory Purkinje axon terminals of the cat.Brain Res., 54, 115–127.

    Article  PubMed  CAS  Google Scholar 

  • Fugelli, K, and Thoroed, S.M. (1986): Taurine transport associated with cell volume regulation in flounder erythrocytes under anisosmotic conditions. J. Physiol,374, 245–261.

    PubMed  CAS  Google Scholar 

  • Gabbott, P.L.A, Somogyi, J, Stewart, M.G, and Hamori, J. (1986): GABA-immunoreactive neurons in the rat cerebellum: a light and electron microscopic study. J. Comp. Neurol, 251, 474–490.

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb, D.I, Chang, Y.-C, and Schwob, J.E. (1986): Monoclonal antibodies to glutamic acid decarboxylase. Proc. Natl Acad. Sci. USA, 83, 8808–8812.

    Article  PubMed  CAS  Google Scholar 

  • Hamberger, A.C, Chiang, G.H, Nylén, E.S, Scheff, S.W, and Cotman, C.W. (1979): Glutamate as a CNS transmitter. I. Evaluation of glucose and glutamine as precursors for the synthesis of preferentially released glutamate. Brain Res., 168, 513–530.

    CAS  Google Scholar 

  • Hámori, J., Takács, J., and Petrusz, P. (1990): Immunogold electron microscopic demonstration of glutamate and GABA in normal and deafferented cerebellar cortex: Correlation between transmitter content and synaptic vesicle size. J. Histochem. Cytochem., 38, 1767–1777.

    Article  PubMed  Google Scholar 

  • Horikoshi, T, Asanuma, A, Yanagisawa, K, Anzai, K, and Goto, S. (1988): Taurine and β-alanine act on both GABA and glycine receptors in Xenopus oocyte injected with mouse brain messenger RNA. Mol Brain Res., 4, 97–105.

    Article  CAS  Google Scholar 

  • Huxtable, R.J. (1981) Sources and turnover rates of taurine in nursing and weaned rat pups. J. Nutr., 11, 1275–1286.

    Google Scholar 

  • Ida, S, Kuriyama, K, Tomida, Y, and Kimura, H. (1987): Antisera against taurine: Quantitative characterization of the antibody specificity and its application to immunohistochemical study in the rat brain. J. Neurosci. Res., 18, 626–631.

    Article  PubMed  CAS  Google Scholar 

  • Ji, Z., Aas, J.-E., Laake, J., Walberg, F., and Ottersen, O.P. (1991): An electron microscopic analysis of glutamate and glutamine in terminals of rat spinocerebellar fibers.J. Comp. Neurol, 307, 1–15.

    Article  Google Scholar 

  • Kvamme, E. (1983): Glutamine. In: Handbook of Neurochemistry,Vol. 3, 2nd ed (A. Lajtha, ed). New York: Plenum, pp. 405–422.

    Google Scholar 

  • Laake, J.H.,Gundersen, V., Nordbø, G., Ottersen, O.P., and Storm-Mathisen, J. (1986): An antiserum against glutamine. In: Excitatory Amino Acids(P.J. Roberts, J. Storm-Mathisen, and H.F. Bradford, eds). London: Macmillan, pp. 448–450.

    Google Scholar 

  • Liu, C.J., Grandes, P., Matute, C, Cuénod, M., and Streit, P. (1989): Glutamate-like immunoreactivity revealed in rat olfactory bulb, hippocampus and cerebellum by monoclonal antibody and sensitive staining method. Histochemistry 90, 427–445.

    Article  PubMed  CAS  Google Scholar 

  • Madl, J.E., Beitz, A.J., Johnson, R.L., and Larson, A.A. (1987): Monoclonal antibodies specific for fixative-modified aspartate: Immunocytochemical localization in the rat CNS. J. Neurosci., 7, 2639–2650.

    Google Scholar 

  • Madsen, S., Ottersen, O.P., and Storm-Mathisen, J. (1985): Immunocytochemical visualization of taurine: Neuronal localization in the rat cerebellum. Neurosci. Lett., 60, 255–260.

    Article  PubMed  CAS  Google Scholar 

  • Madsen, S., Ottersen, O.P., Storm-Mathisen, J., and Sturman, J.A. (1990): Immunocytochemical localization of taurine: Methodological aspects. In: Taurine: Functional Neurochemistry, Physiology, and Cardiology (H. Pasantes-Morales, et al., eds). New York: Wiley-Liss, pp. 37–44.

    Google Scholar 

  • Matute, C, Liu, C.J., Grandes, P., Cuénod, M., Streit, P. (1987a): Glutamate-like immunoreactivity revealed in rat brain by monoclonal antibody and sensitive staining method. Soc. Neurosci. Abstr., 13, 1562.

    Google Scholar 

  • Matute, C, and Streit, P. (1986): Monoclonal antibodies demonstrating GABA-like immunoreactivity. Histochemistry, 86, 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Matute, C, Wiklund, L., Streit, P., and Cuénod, M. (1987b): Selective retrograde labeling wih D-[3H]-aspartate in the monkey olivocerebellar projection. Exp. Brain Res., 66, 445–447.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, B.J., Wood, J.G, Saito, K., Barber, R., Vaughn, J.E., Roberts, E., and Wu, J.-Y. (1974): The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum. Brain Res., 76, 377–391.

    Article  PubMed  CAS  Google Scholar 

  • Meldrum, B.S., Swan, J.H., Ottersen, O.P., and Storm-Mathisen, J. (1987): Redistribution of transmitter amino acids in rat hippocampus and cerebellum during seizures induced by L-allylglycine and bicuculline: An immunocytochemical study with antisera against conjugated GABA, glutamate, and aspartate. Neuroscience, 22, 17–27.

    Article  PubMed  CAS  Google Scholar 

  • Morales, E., and Tapia, R. (1987): Neurotransmitters of the cerebellar glomeruli: Uptake and release of labeled γ-aminobutyric acid, glycine, serotonin and choline in a purified glomerulus fraction and in granular layer slices. Brain Res., 420, 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini, E. (1972): The histology and cytology of the cerebellar cortex. In: The Comparative Anatomy and Histology of the Cerebellum. The Human Cerebellum, Cerebellar Connections and Cerebellar Cortex (O. Larsell, and J. Jansen, eds). Minneapolis: University of Minnesota Press, pp. 201–264.

    Google Scholar 

  • Mugnaini, E., and Oertel, W.H. (1985): An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunoeytoehemistry. In: Handbook of Chemical Neuroanatomy, Vol. 4. (A. Björklund, and T. Hökfelt, eds). Amsterdam: Elsevier, pp. 436–608.

    Google Scholar 

  • Norenberg, M.D., Martinez-Hernandez, A. (1979): Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res., 161,303–310.

    Article  PubMed  CAS  Google Scholar 

  • Oertel, W.H., Schmechel, D.E., Mugnaini, E., Tappaz, M.L., and Kopin, I.J. (1981): Immunocytochemical localization of glutamate decarboxylase in rat cerebellum with a new antiserum. Neuroscience, 6, 2715–2735.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, K., Kimura, H., and Sakai, Y. (1983a): Evidence for taurine as an inhibitory neurotransmitter in cerebellar stellate interneurons: Selective antagonism by TAG (6-aminomethyl-3-methyl-4H, l,2,4-benzothiadiazine-1,1-dioxide). Brain Res., 265, 163–168.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, K, Kimura, H, and Sakai, Y. (1983b): Antagonistic action of 6-aminomethyl-3-methyl-4H, l,2,4-benzothiadiazine-1,1-dioxide (TAG) and evidence for a transmitter role of taurine in stellate interneurons in the cerebellum. In: Sulfur Amino Acids: Biochemical and Clinical Aspects. (K. Kuriyama, R. Huxtable, and H. Iwata, eds). New York: Alan R. Liss, pp. 151–160.

    Google Scholar 

  • Okamoto, K., Kimura, H., and Sakai, Y. (1983c): Taurine-induced increase of the Cl-conductance of cerebellar Purkinje dendrites in vitro. Brain Res., 259, 319–323.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, K., Kimura, H., and Sakai, Y. (1983d): Ionic mechanisms of the action of taurine on cerebellar Purkinje cell dendrites in vitro: Intradendritic study. Brain Res., 260, 261–269.

    Article  PubMed  CAS  Google Scholar 

  • Ottersen, O.P. (1987): Postembedding light- and electron microscopic immunocytochemistry of amino acids: Description of a new model system allowing identical conditions for specificity testing and tissue processing: Exp. Brain Res., 69, 167–174.

    CAS  Google Scholar 

  • Ottersen, O.P. (1988): Quantitative assessment of taurine-like immunoreactivity in different cell types and processes in rat cerebellum: An electromicroscopic study based on a postembedding immunogold labelling procedure. Anat. Embryol, 178, 407–421.

    Article  PubMed  CAS  Google Scholar 

  • Ottersen, O.P. (1989): Postembedding immunogold labelling of fixed glutamate: An electron microscopic analysis of the relationship between gold particle density and antigen concentration. J. Chem. Neuroanat., 2, 57–66.

    PubMed  CAS  Google Scholar 

  • Ottersen, O.P, and Bramham, C.R. (1988): Quantitative electron microscopic immunocytochemistry of excitatory amino acids. In: Frontiers in Excitatory Amino Acid Research, (E.A. Cavalheiro, J. Lehmann, and L. Turski, eds). New York: Alan R. Liss, pp. 93–100.

    Google Scholar 

  • Ottersen, O.P, Davanger, S, and Storm-Mathisen, J. (1987): Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: A comparison with the distribution of GABA-like immunoreactivity and with [3H]glycine and [3H]-GABA uptake. Exp. Brain Res., 66, 211–221.

    Article  PubMed  CAS  Google Scholar 

  • Ottersen, O.P, Madsen, S, Meldrum, B.S, and Storm-Mathisen, J. (1985): Taurine in the hippocampal formation of the Senegalese baboon Papio papio: An immunocytochemical study with an antiserum against conjugated taurine. Exp. Brain Res., 59, 457–462.

    Article  PubMed  CAS  Google Scholar 

  • Ottersen, O.P, Madsen, S, Storm-Mathisen, J, Somogyi, P, Scopsi, L, and Larsson, L.-I. (1988b): Immunocytochemical evidence suggests that taurine is colocalized with GABA in the Purkinje cell terminals, but that the stellate cell terminals predominantly contain GABA: A light- and electron microscopic study of the rat cerebellum. Exp. Brain Res., 72, 407–416.

    Article  PubMed  CAS  Google Scholar 

  • Ottersen, O.P, and Storm-Mathisen, J. (1984a): Neurons containing or accumulating transmitter amino acids. In: Handbook of Chemical Neuroanatomy, Vol. 3. (A. Björklund, T. Hökfelt, and M.J. Kuhar, eds). Amsterdam: Elsevier, pp. 141–246.

    Google Scholar 

  • Ottersen, O.P, and Storm-Mathisen, J. (1984b): Glutamate- and GABA-containing neurons in the mouse and rat brain as demonstrated with a new immunocytochemical technique. J. Comp. Neurol, 229, 374–392.

    Article  PubMed  CAS  Google Scholar 

  • Ottersen, O.P, and Storm-Mathisen, J. (1985): Different neuronal localization of aspartate-like and glutamate-like immunoreactivities in the hippocampus of rat, guinea pig, and Senegalese baboon (Papio papio), with a note on the distribution of GABA. Neuroscience, 16, 589–606.

    Article  PubMed  CAS  Google Scholar 

  • Ottersen, O.P, and Storm-Mathisen, J. (1987): Localization of amino acid neurotransmitters by immunocytochemistry. Trends Neurosci., 10, 250–255.

    Article  CAS  Google Scholar 

  • Ottersen, O.P, and Storm-Mathisen, J, Madsen, S, Skumlien, S, and Str0mhaug, J. (1986): Evaluation of the immunocytochemical method for amino acids. Med. Biol, 64, 147–158.

    PubMed  CAS  Google Scholar 

  • Ottersen, O.P, Storm-Mathisen, J, and Somogyi, P. (1988a): Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res., 450, 342–353.

    Article  PubMed  CAS  Google Scholar 

  • Ottersen, O.P, Storm-Mathisen, J, and Laake, J.H. (1990a): Cellular and subcellular localization of glycine studied by quantitative electron microscopic immunocytochemistry. In: Glycine Neurotransmission. (O.P. Ottersen and J. Storm-Mathisen, eds). Chichester: Wiley, pp. 303–328.

    Google Scholar 

  • Ottersen, O.P, Laake, J.H, and Storm-Mathisen, J. (1990b): Demonstration of a releasable pool of glutamate in cerebellar mossy and parallel fibre terminals by means of light and electron microscopic immunocytochemistry. Arch. Ital. Biol, 128, 111–125.

    PubMed  CAS  Google Scholar 

  • Palay, S.L, and Chan-Palay, V. (1974): Cerebellar Cortex. Berlin-Heidelberg-New York: Springer.

    Book  Google Scholar 

  • Palkovits, M, Léránth, C, Göres, T, and Young, W.S. III (1987): Corticotropin-releasing factor in the olivocerebellar tract of rats: demonstration by light- and electron-microscopic immunohistochemistry and in situ hybridization histochemistry. Proc. Natl. Acad. Sci. USA, 84, 3911–3915.

    Article  PubMed  CAS  Google Scholar 

  • Powers, R.E, DeSouza, E.B, Walker, L.C, Price, D.L, Vale, W.W, and Young, W.S. Ill (1987): Corticotropin-releasing factor as a transmitter in the human olivocerebellar pathway. Brain Res., 415, 347–352.

    Article  PubMed  CAS  Google Scholar 

  • Ramón y Cajal, S. (1888): Sobre las fibras nerviosas de la capa molecular del cerebelo. Rev. Trimestr. Histol, 2, 33–41.

    Google Scholar 

  • Ramón y Cajal, S. (1889): Sobre las fibras nerviosas de la capa granulosa del cerebelo. Rev. Trimestr. Histol, 4, 107–118.

    Google Scholar 

  • Ribak, C.E, Vaughn, J.E, and Saito, K. (1978): Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport. Brain Res., 140, 315–332.

    Article  PubMed  CAS  Google Scholar 

  • Rinvik, E, and Ottersen, O.P. (1988): Demonstration of GABA and glutamate in the nucleus reticularis thalami: A postembedding immunogold-labelling investigation in the cat and baboon. In: Cellular Thalamic Mechanisms. (M. Bentivoglio, and R. Spreafico, eds). Amsterdam: Elsevier, pp. 321–337.

    Google Scholar 

  • Saito, K, Barber, R, Wu, J.-Y, Matsuda, T, Roberts, E, and Vaughn, J.E. (1974): Immunohistochemical localization of glutamate decarboxylase in rat cerebellum. Proc. Natl. Acad. Sci. USA, 71,269–273.

    Article  PubMed  CAS  Google Scholar 

  • Seguela, P., Gamrani, H., Geffard, M., Calas, A., and Le Moal, M. (1985): Ultrastructural immunocytochemistry of y-aminobutyrate in the cerebral and cerebellar cortex of the rat. Neuroscience, 16, 865–874.

    Article  PubMed  CAS  Google Scholar 

  • Solis, J.M., Herranz, A.S., Herreras, O., Lerma, J. and del Rio, R.M. (1988): Does taurine act as an osmoregulatory substance in the rat brain? Neurosci. Lett., 91, 53–58.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, P., Halasy, K., Somogyi, J., Storm-Mathisen, J., and Ottersen, O.P. (1986): Quantification of immunogold labelling reveals enrichment of glutamate in mossy and parallel fibre terminals in cat cerebellum. Neuroscience, 19, 1045–1050.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, P., and Hodgson, A.J. (1985): Antiserum to γ-aminobutyric acid. Ill Demonstration of GABA in Golgi-impregnated neurons and in conventional electron microscopic sections of cat striate cortex. J. Histochem. Cytochem., 33, 249–257.

    CAS  Google Scholar 

  • Somogyi, P., Hodgson, A.J., Chubb, I.W, Penke, B., and Erdei, A. (1985): Antisera to γ-aminobutyric acid. II Immunocytochemical application to the central nervous system. J. Histochem. Cytochem., 33, 240–248.

    CAS  Google Scholar 

  • Somogyi, P., Hodgson, A.J., Smith, A.D., Nunzi, M.G, Gorio, A., and Wu, J.-Y. (1984): Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin-or cholecystokinin-immunoreactive material. J. Neurosci., 4, 2590–2603.

    PubMed  CAS  Google Scholar 

  • Storm-Mathisen, J., Leknes, A.K., Bore, A.T., Vaaland, J.L., Edminson, P., Haug, F.M.S., and Ottersen, O.P. (1983): First visualization of glutamate and GABA in neurones by immunoeytoehemistry. Nature (Lond.), 301, 517–520.

    Article  CAS  Google Scholar 

  • Storm-Mathisen, J., and Ottersen, O.P. (1988a): Localization of excitatory amino acid transmitters. In: Excitatory Amino Acids in Health and Disease (D. Lodge, ed). Chichester: John Wiley, pp. 107–141.

    Google Scholar 

  • Storm-Mathisen, J., and Ottersen, O.P. (1988b): Anatomy of putative glutamatergic neurons. In: Neurotransmitters and Cortical Function. (M. Avoli, T.A. Reader, R.W. Dykes, and P. Gloor, eds). New York: Plenum, pp. 39–70.

    Chapter  Google Scholar 

  • Storm-Mathisen, J., Ottersen, O.P., and Fu-Long, T. (1986a): Antibodies for the localization of excitatory amino acids. In: Excitatory Amino Acids. (P.J. Roberts, J. Storm-Mathisen, and H.F. Bradford, eds). London: Macmillan, pp. 101–116.

    Google Scholar 

  • Storm-Mathisen, J., Ottersen, O.P., Fu-long, T., Gundersen, V., Laake, J.H., and Nordbø, G. (1986b): Metabolism and transport of amino acids studied by immunoeytoehemistry. Med. Biol, 64,127–132.

    PubMed  CAS  Google Scholar 

  • Streit, P., Do, K.Q., Vollenweider, F., Grandes, P., Liu, C.J., Matute, C, and Cuénod, M. (1988): Localization and release of excitatory amino acids. In: Frontiers in Excitatory Amino Acid Research (E. Cavalheiro, J. Lehmann, and L. Turski, eds). New York: Alan R. Liss, pp. 101–108.

    Google Scholar 

  • Sturman, J.A., Moretz, R.C., French, J.H., and Wisniewski, H.M. (1985): Taurine deficiency in the developing cat: Persistence of the cerebellar external granule cell layer. J. Neurosci. Res., 13, 405–416.

    Article  PubMed  CAS  Google Scholar 

  • Toggenburger, G, Wiklund, L., Henke, H, and Cuénod, M. (1983): Release of endogenous and accumulated amino acids from slices of normal and climbing fiber-deprived rat cerebellar slices. J. Neurochem., 41, 1606–1613.

    Article  PubMed  CAS  Google Scholar 

  • Triller, A., Cluzeaud, F., and Korn, H. (1987): GABA-containing terminals can be apposed to glycine receptors at central synapses. J. Cell. Biol, 104, 947–956.

    Article  PubMed  CAS  Google Scholar 

  • Van den Bergh, C.J., Matheson, D.F., Ronda, G., Reijnierse, G.L.A., Blokhuis, G.G.D., Kroon, M.C., Clarke, D.D., and Garfinkel, D. (1975): A model of glutamate metabolism in brain: A biochemical analysis of a heterogeneous structure. In: Metabolic Compartmentation and Neurotransmission. Relation to Brain Structure and Function (S. Berl, D.D. Clarke, and D. Schneider, eds). New York: Plenum Press, pp. 515–543.

    Chapter  Google Scholar 

  • van den Pol, A.N., and Gores, T. (1988): Glycine and glycine receptor immunoreactivity in brain and spinal cord. J. Neurosci., 8, 472–492.

    PubMed  Google Scholar 

  • Wade, J.V., Olson, J.P., Samson, F.E., Nelson, S.R., and Pazdernik, T.L. (1988): A possible role for taurine in osmoregulation within the brain. J. Neurochem.,51, 740–745.

    Article  PubMed  CAS  Google Scholar 

  • Wiklund, L., Toggenburger, G, Cuenod, M. (1982): Aspartate: Possible neurotransmitter in cerebellar climbing fibres. Science, 216, 78–79.

    Article  PubMed  CAS  Google Scholar 

  • Wiklund, L., Toggenburger, G, and Cuenod, M. (1984): Selective retrograde labelling of the rat olivocerebellar climbing fiber system with D-[3H]-aspartate. Neuroscience, 13, 441–468.

    Article  PubMed  CAS  Google Scholar 

  • Wilkin, G.P., Csillag, A., Balázs, R., Kingsbury, A.E., Wilson, J.E., and Johnson, A.L. (1981): Localization of high affinity [3H]glycine transport sites in the cerebellar cortex. Brain Res., 216, 11–33.

    Article  PubMed  CAS  Google Scholar 

  • Wright, C.E., Tallan, H.H., and Lin, Y.Y. (1986): Taurine: Biological update. Annu. Rev. Biochem., 55, 427–453.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J.-Y., Denner, L.A., Wei, S.C., Lin, C.-T., Song, G.-X., Xu, Y.F., Liu, J.W., and Lin, H.S. (1986): Production and characterization of polyclonal and monoclonal antibodies to rat brain L-glutamate decarboxylase. Brain Res., 373, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Yarbrough, G.G., Singh, D.K., and Taylor, D.A. (1981): Neuropharmacological characterization of a taurine antagonist. J. Pharmacol Exp. Ther., 219, 604–613.

    PubMed  CAS  Google Scholar 

  • Yoshida, M., Karasawa, N., Ito, M., Sakai, M., and Nagatsu, I. (1986): Demonstration of taurineimmuno-reactive structures in the rat brain. Neurosci. Res., 3, 356–363.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, N, Laake, J, Nagelhus, E, Storm-Mathisen, J., and Ottersen, O.P. (1991): Distribution of glutamine-like immunoreactivity in the cerebellum of rat and baboon (Papio anubis) with reference to the issue of metabolic compartmentation. Anat. Embryol, 184, 213–223.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, N, Walberg, F, Laake, J.H, Meldrum, B.S, and Ottersen, O.P. (1990): Aspartate-like and glutamate-like immunoreactivities in the inferior olive and climbing fibre system: A light microscopic and semiquantitative electron microscopic study in rat and baboon (PAPIO ANUBIS). Neuroscience, 38, 61–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Ottersen, O.P., Laake, J.H. (1992). Light and Electron Microscopic Immunocytochemistry of Putative Neurotransmitter Amino Acids in the Cerebellum with Some Observations on the Distribution of Glutamine. In: Llinás, R., Sotelo, C. (eds) The Cerebellum Revisited. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2840-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2840-0_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7691-3

  • Online ISBN: 978-1-4612-2840-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics