Skip to main content

Zebrins: Molecular Markers of Compartmentation in the Cerebellum

  • Chapter
The Cerebellum Revisited

Abstract

Ordered projections in the brain are established in several stages. Initially, the formation of an afferent pathway depends on white matter interactions, such as contact guidance along genetically determined pathways and selective axon fasciculation, to guide neurites to the correct target fields. Subsequently, target cell recognition by afferent growth cones and competition between growth cones for targets (and between targets for inputs) serve to eliminate superfluous or incorrect projections and may refine the topography. Many regions, including the neocortex, the superior colliculus, the striatum, and the dorsal column nuclei, are functionally organized in the form of patches or stripes that correspond to the discrete segregation of the afferent or efferent axons. The same appears to be true in the cerebellum. Studies using the retrograde-anterograde axonal transport of tracers, electrophysiological recording, somatotopic mapping, and molecular mapping have all revealed a parasagittal bandlike topographical organization of the cerebellar cortex and its afferent and efferent connections. We are using pattern formation in the cerebellar cortex as a model to explore the rules that give rise to topographically ordered projections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman, J. (1972): Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkirije cells and of the molecular layer. J. Comp. Neurol., 145, 399–464.

    CAS  Google Scholar 

  • Armstrong, D.M., Campbell, N.C., Edgley, S.A., Schild, R.F., and Trott, J.R. (1982): Investigations of the olivocerebellar and spino-olivary pathways. In: The Cerebellum: New Vistas. (S. Palay and V. Chan-Palay, eds). Berlin: Springer-Verlag, pp. 195–232.

    Chapter  Google Scholar 

  • Armstrong, D.M., Harvey, R.J., and Schild, R.F. (1974): Topographical localization in the olivocerebellar projection: An electrophysiological study in the cat. J. Comp. Neurol., 154, 287–302.

    Google Scholar 

  • Armstrong, D.M., and Schild, R.F. (1978): An investigation of the cerebellar corticonuclear projections in the rat using an autoradiographic tracing method. I. Projections from the vermis. Brain Res., 141, 1–19.

    CAS  Google Scholar 

  • Arsenio-Nunes, M.L., and Sotelo, C. (1985): Development of the spinocerebellar system in the postnatal rat. J. Comp. Neurol., 237, 291–306.

    Article  PubMed  CAS  Google Scholar 

  • Beinfeld, M.C., and Korchak, D.M. (1985): The regional distribution and the chemical, chromatographic immunologic characterization of motilin brain peptide: The evidence for a difference between brain and intestinal motilin-immunoreactive material. J. Neurosci, 5, 2502–2509.

    PubMed  CAS  Google Scholar 

  • Beyerl, B.D., Borges, L.F., Swearingen, B., and Sidman, R.L. (1982): Parasagittal organization of the olivocerebellar projection in the mouse. J. Comp. Neurol., 209, 339–346.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, G.A. (1982) The pattern of distribution of the local axonal collaterals of Purkinje cells in the intermediate cortex of the anterior lobe and paramedian lobule of the cat cerebellum. J. Comp. Neurol., 210, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Bloedel, J.R., and Courville, J. (1981): Cerebellar afferent systems. In: Handbook of Physiology. (J.M. Brookhart, V.B. Mountcastle, and V.B. Brooks, eds). Bethesda, MD: American Physiology Society, 2, 735–829.

    Google Scholar 

  • Boegman, R., Parent, A., and Hawkes, R. (1988) Zonation in the rat cerebellar cortex: Patches of high acetylcholinesterase activity in the granular layer are congruent with Pukinje cell compartments. Brain Res., 448, 237–251.

    Article  PubMed  CAS  Google Scholar 

  • Brochu, G., Maler, L., and Hawkes, R. (1990): Zebrin II: A polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J. Comp. Neurol., 291, 538–552.

    Article  PubMed  CAS  Google Scholar 

  • Brodal, A. (1976): The olivocerebellar projection in the cat as studied with the method of retrograde axonal transport of horseradish peroxidase. II. The projection to the uvula. J. Comp. Neurol, 166, 417–426.

    CAS  Google Scholar 

  • Brodal,A.(1980): Olivocerebellocortical projection in the cat as determined with the method of retrograde axonal transport of horseradish peroxidase 2. Topographical pattern in relation to the longitudinal sub-division of the cerebellum. In: The Inferior Olivary Nucleus: Anatomy and Physiology (J. Courville, C. de Montigny, and Y. Lamarre eds). New York: Raven Press, pp. 187–205.

    Google Scholar 

  • Brodal, A., Walberg, F., and Hoddevik, G.H. (1975): The olivocerebellar projection in the cat as studied with the method of retrograde axonal transport of horseradish peroxidase I. The projection to the paramedian lobule. J. Comp. Neurol., 164,449–470.

    Article  CAS  Google Scholar 

  • Brown, B.L., and Graybiel, A.M. (1983): Zonal organization in the cerebellar vermis of the cat. Anat. Rec., 205, 25A.

    Google Scholar 

  • Campbell, N.C., and Armstrong, D.M. (1983a): The olivocerebellar projection in the rat: An autoradiographic study. Brain Res., 275, 215–233.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, N.C., and Armstrong, D.M. (1983b): Topographical localization in the olivocerebellar projection in the rat: An autoradiographic study. Brain Res., 275, 235–249.

    Article  PubMed  CAS  Google Scholar 

  • Campistron, G., Geffard, M., and Buijs, R.M. (1986): Immunological approach to the detection of taurine and immunocytochemical results. J. Neurochem., 46, 862–868.

    Article  PubMed  CAS  Google Scholar 

  • Chambers, W.W., and Sprague, J.M. (1955a): A functional localization in the cerebellum: I. Organization in longitudinal corticonuclear zones and their contribution to the control of posture, both extrapyramidal and pyramidal. J. Comp. Neurol., 103, 105–130.

    Article  CAS  Google Scholar 

  • Chambers, W.W., and Sprague, J.M. (1955b): Functional localization in the cerebellum: II. Somatotopic organization in cortex and nuclei. Arch. Neurol. Psychiatry, 74, 653–680.

    CAS  Google Scholar 

  • Changeux, J.P., and Danchin, A. (1976): Selective stabilization of developing synapses, a mechanism for the specification of neuronal networks. Nature, 264, 705–712.

    Article  PubMed  CAS  Google Scholar 

  • Chan-Palay, V. (1971): The recurrent collaterals of Purkinje cell axons: A correlated study of the rat’s cerebellar cortex with electron microscopy and the Golgi method. Z. Anat. Entwickl.-Gesch., 134, 200–234.

    Article  CAS  Google Scholar 

  • Chan-Palay, V., Nilaver, G., Palay, S.L., Beinfeld, M.C., Zimmerman, E.A., Wu, J-Y., and O’Donohue, T.L. (1981): Chemical heterogeneity in cerebellar Purkinje cells: Existence and co-existence of glutamic acid decarboxylase-like and motilin-like immunoreactivities. Proc. Natl. Acad. Sci. USA, 78,7787–7791.

    Article  PubMed  CAS  Google Scholar 

  • Chan-Palay, V., Palay, S.L., Brown, J.T, and Van Itallie, C. (1977): Sagittal organization of olivocerebellar and reticulocerebellar projections: Autoradiographic studies with 35S-methionine. Exp. Brain Res., 30, 561–576.

    Article  PubMed  CAS  Google Scholar 

  • Chan-Palay, V, Palay, S.L, and Wu, J-Y. (1982): Sagittal cerebellar microbands of taurine neurons: Immunocytochemical demonstration by using antibodies against the taurine synthesizing enzyme cysteine sulfinic acid decarboxylase. Proc. Natl. Acad. Sci. USA, 79, 4221–4225.

    Article  PubMed  CAS  Google Scholar 

  • Constantine-Paton, M. (1982): The retinotectal hookup: the process of neural mapping. In Developmental Order: Its Origin and Regulation (S. Subtelny, ed). New York: Alan R. Liss Inc, pp. 317–349.

    Google Scholar 

  • Courville, J. (1975): Distribution of olivocerebellar fibers demonstrated by a radioautographic tracing method. Brain Res., 95, 253–263.

    Article  PubMed  CAS  Google Scholar 

  • Courville, J., and Diakiw, N. (1976): Cerebellar corticonuclear projection in the cat. The vermis of anterior and posterior lobes. Brain Res., 110, 1–20.

    CAS  Google Scholar 

  • Courville, J., and Faraco-Cantin, F. (1978): On the origin of the climbing fibers of the cerebellum. An experimental study in the cat with an autoradio¬graphic tracer method. Neuroscience, 3, 797–809.

    Article  PubMed  CAS  Google Scholar 

  • Crepel, F. (1971): Maturation of climbing fiber responses in the rat. Brain Res., 35, 272–276.

    Article  PubMed  CAS  Google Scholar 

  • Crepel, F. (1982): Regression of functional synapses in the immature mammalian cerebellum. Trends Neurosci., 5, 266–269.

    Article  Google Scholar 

  • Crepel, F., Mariani, J., and Delhaye-Bouchard, N. (1976): Evidence for a multiple innervation of Purkinje cells by climbing fibers in the immature rat cerebellum. J. Neurobiol., 1, 567–578.

    Article  Google Scholar 

  • DorĂ©, L., Jacobson, C.D., and Hawkes, R. (1990): The organization and postnatal development of zebrin II antigenic compartmentation in the cerebellar vermis of the grey opossum, Monodelphis domestica. J. Comp. Neurol, 291,431–449.

    Article  Google Scholar 

  • Eisenman, L. (1981) Olivocerebellar projections to the pyramis and copula pyramidis in the rat: Differential projections to parasagittal zones. J. Comp. Neurol, 199, 65–76.

    Article  PubMed  CAS  Google Scholar 

  • Eisenman, L.M. (1984): Organization of the olivocerebellar projection to the uvula in the rat. Brain Behav. Evol, 24, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Eisenman, L.M., and Goracchi, G.P. (1983): A double label retrograde tracing study of the olivocerebellar projection to the pyramis and uvula in the rat. Neurosci. Lett., 41, 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Eisenman, L.M., and Hawkes, R. (1990): 5’-nucleotidase and the mabQ113 antigen share a common distribution in the cerebellar cortex of the mouse. Neuroscience, 31, 231–235.

    Article  Google Scholar 

  • Eisenman, L.M, Sieger, D.D., and Blatt, G.J. (1983): The olivocerebellar projection to the uvula in the mouse. J. Comp. Neurol, 221, 53–59.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, D.C, Hellitt, R.E, and Welch, R.B. (1963): Patterns of localization in the cerebellar corticonuclear projections of the albino rat. J. Comp. Neurol, 121, 51–68.

    Article  PubMed  CAS  Google Scholar 

  • Gravel, C, Eisenman, L.M, Sasseville, R, and Hawkes, R, (1987): Parasagittal organization of the rat cerebellar cortex: direct correlation between antigenic Purkinje cell bands revealed by mabQ113 and the organization of the olivocerebellar projection. J. Comp. Neurol., 265, 295–310.

    Article  Google Scholar 

  • Gravel, C., and Hawkes, R. (1990): Parasagittal organization of the rat cerebellar cortex: Direct comparison of Purkinje cell compartments and the organization of the spinocerebellar projection. J. Comp. Neurol., 291, 79–102.

    Article  PubMed  CAS  Google Scholar 

  • Gravel, C., Leclerc, N., Plioplys, A., and Hawkes, R. (1986): Focal axonal swellings in rat cerebellar Purkinje cells during normal development. Brain Res., 363, 325–332.

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen, H.J., and Voogd, J. (1977): The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum. J. Comp. Neurol., 174, 417–488.

    CAS  Google Scholar 

  • Groenewegen, H.J., Voogd, J., and Freeman, S.L. (1979): The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum. J. Comp. Neurol., 183, 551–602.

    CAS  Google Scholar 

  • Haines, D.E., Patrick, G.W., and Satrulee, P. (1982): Organization of cerebellar corticonuclear fiber systems. In: The Cerebellum—New Vistas (S.L.Palayand V. Chan-Palay,eds). Berlin-Heidelburg-New York: Springer-Verlag, pp. 320–367.

    Chapter  Google Scholar 

  • Hawkes, R., Colonnier, ML, and Leclerc, N. (1985): Monoclonal antibodies reveal sagittal banding in the rodent cerebellar cortex. Brain Res., 333,359–365.

    Article  PubMed  CAS  Google Scholar 

  • Hawkes, R., and Leclerc, N. (1986): Immunocytochemical demonstration of topographic ordering of Purkinje cell axon terminals in the fastigial nuclei of the rat. J. Comp. Neurol., 244, 481–491.

    Article  PubMed  CAS  Google Scholar 

  • Hawkes, R., and Leclerc, N. (1987): Antigenic map of the rat cerebellar cortex: the distribution of parasagittal bands as revealed by monoclonal anti-Purkinje cell antibody mabQl 13. J. Comp. Neurol., 256,29–41.

    Article  PubMed  CAS  Google Scholar 

  • Hawkes, R., and Leclerc, N. (1989): Purkinje cell axon collateral distributions reflect the chemical compartmentation of the rat cerebellar cortex. Brain Res., 476, 279–290.

    Article  PubMed  CAS  Google Scholar 

  • Hazlett, J.C., Martin, G.F., and Dom, R. (1971): Spinocerebellar fibers of the opossum Didelphis marsupialis virginiana. Brain Res., 33, 257–271.

    Article  PubMed  CAS  Google Scholar 

  • Hess, D.T., and Hess, A. (1986): 5’-nucleotidase of cerebellar molecular layer: Reduction in Purkinje cell-deficient mice. Brain Res., 394, 93–100.

    PubMed  CAS  Google Scholar 

  • Hess, D.T., and Voogd, J. (1986): Chemoarchitectonic zonation of the monkey cerebellum. Brain Res., 369, 383–387.

    Article  PubMed  CAS  Google Scholar 

  • Hillman, D.E., and Chen, S. (1981): Vunerability of cerebellar development in malnutrition. I. Quantitation of layer volume and neuron numbers. Neuro- science, 6, 1249–1262.

    CAS  Google Scholar 

  • Ingram, V.I., Ogren, M.P., Chatot, C.L., Gossels, J.M., and Owens, B.B. (1985): Diversity among Purkinje cells in the monkey cerebellum. Proc. Natl. Acad. Sci. USA, 82,7131–7135.

    Article  PubMed  CAS  Google Scholar 

  • Jansen, J., and Brodal, A. (1940): Experimental studies on the intrinsic fibers of the cerebellum II. The corticonuclear projection. J. Comp. Neurol., 73, 267–321.

    Article  Google Scholar 

  • Jansen, J., and Brodal, A. (1942): Experimental studies on the intrinsic fibers of the cerebellum. The corticonuclear projection in the rabbit and in the monkey (Macacus rhesus). Nor she Vid. Akad., Oslo, Avh. I. Mat. Naturv, Kl.,3, 1–50.

    Google Scholar 

  • Joseph, J.W., Shambes, G.M., Gibson, J.M., and Welker, W. (1978): Tactile projections to granule cells in caudal vermis of the rat’s cerebellum. Brain Behav. Evol., 15, 141–149.

    Article  PubMed  CAS  Google Scholar 

  • Kassel, J., Shambes, G.M., and Welker, W. (1984): Fractured cutaneous projections to the granule cell layer of the posterior cerebellar hemisphere of the domestic cat. J. Comp. Neurol., 225, 458–468.

    Article  PubMed  CAS  Google Scholar 

  • Killackey, H.P., and Belford, G.R. (1980): Central correlates of peripheral pattern alterations in the trigeminal system of the rat. Brain Res., 183, 205–210.

    Article  PubMed  CAS  Google Scholar 

  • Lange,W. (1982): Regional differences in the cytoarchitecture of the cerebellar cortex. In: The Cerebellum— New Vistas. (S.L. PalayandV. Chan-Palay, eds). Berlin-Heidelburg-New York: Springer-Verlag, pp. 93–105.

    Chapter  Google Scholar 

  • Lange, W., Unger, J., Pitzl, H., and Weindl, A. (1986): Is motilin a cerebellar peptide in the rat? Anat. Embryol, 173, 371–376.

    Article  CAS  Google Scholar 

  • Law, M.I., and Constantine-Paton, M. (1980): Right and left eye bands in frogs with unilateral tectal ablations. Proc. Natl. Acad’. Sci. USA, 11,2314–2318.

    Article  Google Scholar 

  • Leclerc, N., Beesley, P.W., Colonnier, M., Brown, I., Gurd, J.W., Paladino, T, and Hawkes, R. (1990a): Synaptophysin expression during synaptogenesis in the rat cerebellar cortex. J. Comp. Neurol, 280,197–212.

    Article  Google Scholar 

  • Leclerc, N., DorĂ©, L., Parent, A., and Hawkes, R. (1990b): The compartmentation of the monkey and rat cerebellar cortex: zebrin I and cytochrome oxidase. Brain Res., 506, 70–78.

    Article  PubMed  CAS  Google Scholar 

  • Leclerc, N., Gravel, C., and Hawkes, R. (1988): Development of parasagittal zonation in the rat cerebellar cortex: MabQl 13 antigenic bands are created postnatally by the suppression of antigen expression in a subset of Purkinje cells. J. Comp. Neurol., 273, 399–420.

    Article  PubMed  CAS  Google Scholar 

  • Leclerc, N., Herrup, K., Hawkes, R., Schwarting, G., and Yamamoto, M. (1990c): Zebrin II and O-acetyl GD3 divide all Purkinje cells into two distinct complementary sets. 20th Annual Meeting of the Society of Neuroscience 16, 642.

    Google Scholar 

  • Madsen, S., Ottersen, O.P., and Storm-Mathisen, J. (1985): Immunocytochemical visualization of taurine: Neuronal localization in the rat cerebellum. Neurosci. Lett, 60, 255–260.

    Article  PubMed  CAS  Google Scholar 

  • Magnussen, K.R., Madl, J.E, Clements, J.R, Wu, J.-Y, Larson, A.A, and Beitz, A.J. (1988): Colocalization of taurine- and cysteine sulfinic acid decarboxylase-like immunoreactivity in the cerebellum of the rat with monoclonal antibodies against taurine. J. NeuroscL, 8, 4551–4564.

    Google Scholar 

  • Marani, E. (1982a): Topographic enzyme histochemistry of the mammalian cerebellum: 5’-nucleotidase and acetylcholinesterase. Thesis, University of Leiden.

    Google Scholar 

  • Marani, E.(1982b): The ultrastructural localization of 5’-nucleotidase in the molecular layer of the mouse cerebellum. In: Neurotransmitter Interaction and Compartmentation (H.F. Bradford, ed). New York: Plenum Publishing Corp, pp. 557–571.

    Google Scholar 

  • Marani, E, and Voogd, J. (1977): An acetylcholinesterase band pattern in the molecular layer of the cat cerebellum. J. Anat., 124, 335–345.

    PubMed  CAS  Google Scholar 

  • Mariani, J, and Changeux, J.P. (1981): Ontogenesis of olivocerebellar relationships. I. Studies by intracellular recordings of the multiple innervation of Purkinje cells by climbing fibers in the developing rat cerebellum. J. NeuroscL, 1, 696–702.

    CAS  Google Scholar 

  • Mason, C.A, and Gregory, E. (1984): Postnatal maturation of cerebellar mossy and climbing fibers: Transient expression of dual features on single axons. J. NeuroscL, 4, 1715–1735.

    CAS  Google Scholar 

  • Morest, D.K. (1969): The growth of dendrites in the mammalian brain. Z. Anat. entwickl-Gesch., 128, 290–317.

    Article  CAS  Google Scholar 

  • O’Leary, D.D.M., Fawcett, J.M., and Cowan, W.M. (1986): Topographic targeting errors in the retinocollicular projection and their elimination by selective ganglion cell death. J. NeuroscL, 6, 3692–3705.

    Google Scholar 

  • O’Leary, J.L., Petty, J., Smith, J.M., O’Leary, M., and Inukai, S. (1968): Cerebellar cortex of rat and other animals. A structural and ultrastructural study. J. Comp. Neurol, 134, 401–432.

    Google Scholar 

  • Oscarsson, O. (1969): The sagittal organization of the cerebellar anterior lobe as revealed by the projection patterns of the climbing fiber system. In: Neurobiology of Cerebellar Organization and Development. (R. Llinas, ed). Chicago: American Medical Association, pp. 525–532.

    Google Scholar 

  • Oscarsson, O.(198Q): Functional organization of olivary projection to the cerebellar anterior lobe. In: The Inferior Olivary Nucleus: Anatomy and Physiology (J. Courville, C de Montigny, and Y. Lamarre, eds). New York: Raven Press, pp. 279–289.

    Google Scholar 

  • Oscarsson, O., and Sjolund, B. (1977): The ventral spino-olivocerebellar system in the cat 1. Identification of five paths and their termination in the cerebellar anterior lobe. Exp. Brain Res., 28, 469–486.

    CAS  Google Scholar 

  • Oster-Granite, M.L., and Gearhart, J. (1982): Cell lineage analyses of Purkinje cells in murine chimeras. In: The Cerebellum—New Vistas (S.L. Palay and V. Chan-Palay, eds). Berlin-Heidelberg-New York: Springer-Verlag, pp. 75–92.

    Chapter  Google Scholar 

  • Palay, S.L., and Chan-Palay, V. (1974): Cerebellar Cortex, Cytology and Organization. New York-Heidelburg-Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Palkovits, M., Mezey, M., Hamori, J., and Szentagothai, J. (1977): Quantitative histological analysis of the cerebellar nuclei in the cat. I. Numerical data on cells and on synapses. Exp. Brain. Res., 28, 189–209.

    CAS  Google Scholar 

  • Plioplys, A.V., and Hawkes, R. (1986): A survey of mabQ113 immunoreactivity in the adult rat brain: Differential staining of the lateral and medial habe-nular nuclei. Brain Res., 375, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Plioplys, A.V., and Hawkes, R. (1987): The development of differential mabQl 13 immunoreactivity in the rat habenular complex. Brain Res. Bull, 18, 19–24.

    Article  PubMed  CAS  Google Scholar 

  • Plioplys, A.V., and Hawkes, R. (1988): Developmental expression of monoclonal antibody mabQl 13 immunoreactivity in the rat cerebral cortex: Differential sublayering of layer I and labelling of radial glia. J. Neurosci. Res., 20, 359–375.

    Article  PubMed  CAS  Google Scholar 

  • Plioplys, A.V., Thibault, J., and Hawkes, R. (1985): Selective staining of a subset of Purkinje cells in the human cerebellum with monoclonal antibody mabQl 13. J. Neurol. ScL, 70, 245–256.

    Article  CAS  Google Scholar 

  • Puro, D.G., and Woodward, D.J. (1977): Maturation of evoked climbing fiber input to rat Purkinje cells. Exp. Brain Res., 28, 85–110.

    PubMed  CAS  Google Scholar 

  • Ramon-Moliner, E. (1972): Acetylthiocholinesterase distribution in the brainstem of the cat. Ergeb. Anat., 46, 1–52.

    Google Scholar 

  • Ramon y Cajal, S. (1911): Histologic du Systeme Nerveux de l’Homme et des Vertebres. Paris: Maloine.

    Google Scholar 

  • Robertson, B., Grant, G, and Bjorkeland, M. (1983): Demonstration of spinocerebellar projections in cat using anterograde WGA-HRP with some observations on spinomesencephalic and spinothalamic projections. Exp. Brain Res., 52, 99–104.

    PubMed  CAS  Google Scholar 

  • Scheibel, A. (1977): Sagittal organization of mossy fiber terminal systems in the cerebellum of the rat: A Golgi study. Exp. Neurol, 57, 1067–1070.

    Article  PubMed  CAS  Google Scholar 

  • Scott, T.G. (1963): A unique pattern of localization in the cerebellum. Nature, 200, 793.

    Article  PubMed  CAS  Google Scholar 

  • Scott, T.G. (1964): A unique pattern of localization within the cerebellum of the mouse. J. Comp. Neurol, 122, 1–8.

    Article  Google Scholar 

  • Shambes, G.M., Beerman, D.H., and Welker, W. (1978a): Multiple tactile area in cerebellar cortex: Another patchy cutaneous projection to granule cell columns in rat. Brain Res., 157, 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Shambes, G.M., Gibson, J.M., and Welker, W. (1978b): Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav. Evol, 15, 94–140.

    Article  PubMed  CAS  Google Scholar 

  • Sotelo, C. (1987): Cerebellar synaptogenesis and the organization of afferent projection maps. Pontificae Acad. Scient. Scripta Varia, 59, 65–90.

    Google Scholar 

  • Sotelo, C, Bourrat, F, and Triller, A. (1984): Postnatal development of the inferior olivary complex in the rat. II. Topographic organization of the immature olivocerebellar projection. J. Comp. Neurol, 222, 177–199.

    CAS  Google Scholar 

  • Tomida, Y, and Kimura, H. (1987): Immunohisto-chemical and biochemical studies of substances with taurine-like immunoreactivity in the brain. Acta Histochem. Cytochem., 20, 31–40.

    Article  CAS  Google Scholar 

  • Van der Loos, H, and Woolsey, T.A. (1973): Somatosensory cortex: Structural alterations following early injury to sense organs. Science, 179, 395–398.

    Article  PubMed  Google Scholar 

  • Van Gilder, J.C, and O’Leary, J.L. (1970): Topical projection of the olivocerebellar system in the cat: an electrophysiological study. J. Comp. Neurol, 140, 69–80.

    Article  Google Scholar 

  • Von de Malsburg, C, and Willshaw, D.J. (1976): Mechanism for producing continuous neural mapping: Ocularity dominance stripes and ordered retinotectal projections. Exp. Brain. Res., Suppl 1, 463–469.

    Google Scholar 

  • Voogd, J. (1964): The Cerebellum of the Cat. Assen: Van Gorcum.

    Google Scholar 

  • Voogd, J. (1967): Comparative aspects of the structure and fibre connections of the mammalian cerebellum. Prog. Brain Res., 25, 94–135.

    Article  PubMed  CAS  Google Scholar 

  • Voogd, J. (1969): The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In: Neurobiology of Cerebellar Evolution and Development (R. Llinas, ed). Chicago: American Medical Association, pp. 493–514.

    Google Scholar 

  • Voogd, J. and BigarĂ©, F. (1980): The topographical distribution of olivary and corticonuclear fibers in the cerebellum. A review. In: The Inferior Olivary Nucleus: Anatomy and Physiology (J. Courville, C. de Montigny, and Y. Lamarre, eds). New York: Raven Press, pp. 207–234.

    Google Scholar 

  • Voogd, J.Gerrits, N.M, and Marani, E. (1985): Cerebellum. In: The Rat Nervous System (G. Paxinos, ed). New York: Academic Press, 2, 251–291.

    Google Scholar 

  • Wassef, M, and Sotelo, C. (1984): Asynchrony in the expression of guanosine 3’:5’-phosphate-dependent protein kinase by clusters of Purkinje cells during the perinatal development of rat cerebellum. Neuroscience, 13, 1217–1241.

    Article  PubMed  CAS  Google Scholar 

  • Wassef, M, Sotelo, C, Thomasset, M, Granholm, A-C, Leclerc, N, Rafrafi, R, and Hawkes, R. (1990): Expression of compartmentation antigen zebrin I in cerebellar transplants. J. Comp. Neurol, 294, 223–234.

    Article  PubMed  CAS  Google Scholar 

  • Wassef, M, Zanetta, J.P, Brehier, A, and Sotelo, C. (1985): Transient biochemical compartmentalization of Purkinje cells during early cerebellar development. Dev. Biol, 111, 129–137.

    Article  PubMed  CAS  Google Scholar 

  • Welker, W.(1987): Spatial organization of somatosensory projections to granule cell cerebellar cortex: Functional and connectional implications of fractured somatotopy. In: New Concepts in Cerebellar Neurobiology (J.S. King ed). New York: Alan R. Liss Inc., pp. 239–280.

    Google Scholar 

  • Welker, W, and Shambes, G.M. (1985): Tactile cutaneous representation in cerebellar granule cell layer of the opossum, Didelphis virginiana. Brain Behav. Evol. 27, 57–79.

    Article  CAS  Google Scholar 

  • Yaginuma, H, and Matsushita, M. (1986): Spinocerebellar projection fields in the horizontal plane of lobules of the cerebellar anterior lobe in the cat: An anterograde wheat germ agglutinin-horseradish peroxidase study. Brain Res., 365, 345–349.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Hawkes, R., Brochu, G., DorĂ©, L., Gravel, C., Leclerc, N. (1992). Zebrins: Molecular Markers of Compartmentation in the Cerebellum. In: LlinĂ¡s, R., Sotelo, C. (eds) The Cerebellum Revisited. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2840-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2840-0_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7691-3

  • Online ISBN: 978-1-4612-2840-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics