A Possible Connection Between the Mossy and Climbing Fiber Systems at Precerebellar Level

  • Francisco J. Rubia

Abstract

This chapter addresses the possibility that there is a precerebellar connection between the two main inputs to the cerebellum, the mossy (MF) and the climbing fiber (CF) system. The idea that both afferent systems could be interconnected before their entrance into the cerebellum came to us as we analyzed the results of extracellular recordings of Purkinje cells (PC), especially the behavior of their two different spikes, the complex spike (CS) and the simple spike (SS), and their relationship in two different preparations: the decerebrate cat and the awake Rhesus monkey.

Keywords

Ketamine Dihydrochloride Diamidino 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso, A., Blanco, M.J., Paino, C.L., and Rubia, F.J. (1986): Distribution of neurons in the main cuneate nucleus projecting to the inferior olive in the cat. Evidence that they differ from those directly projecting to the cerebellum. Neuroscience, 18, 671–683.Google Scholar
  2. Bauswein, E., Kolb, F.P., and Rubia, F.J. (1984): Cerebellar feedback signals of a passive hand movement in the awake monkey. Pflügers Arch., 402,292–299.PubMedCrossRefGoogle Scholar
  3. Bauswein, E., Kolb, F.P., Leimbeck, B., and Rubia, F.J. (1983): Simple and complex spike activity of cerebellar Purkinje cells during active and passive movements in the awake monkey. J. Physiol., 339, 379–394.PubMedGoogle Scholar
  4. Berkley, K.J, Blomqvist, A, Pelt, A, and Flink, R. (1980): Differences in the collateralization of neuronal projections from the dorsal column nuclei and lateral cervical nucleus to the thalamus and tectum in the cat: An anatomical study using two different double- labeling techniques. Brain Res., 202, 273–290.PubMedCrossRefGoogle Scholar
  5. Blanco, M.J. (1988): Proyección cuneo-cerebelosa y cuneo-olivo-cerebelosa. Estudio de la posible interacción antre sus células de origen en el NCI. Doctoral dissertation, Universidad Complutense, Madrid.Google Scholar
  6. Bromberg, M.B, Burnham, J.A, and Towe, A.L. (1981): Doubly projecting neurons of the dorsal column nuclei. Neurosci. Lett., 25, 215–220.PubMedCrossRefGoogle Scholar
  7. Bull, M.S., and Berkley, K.J. (1984): Differences in the neurons that project from the dorsal column nuclei to the diencephalon, pretectum and tectum in the cat. Somatosen. Res., 1, 282–300.Google Scholar
  8. Cooke, J.D, Larson, B, Oscarsson, O, and Sjölund, B. (1971a): Origin and termination of cuneocerebellar tract. Exp. Brain Res., 13, 339–358.PubMedGoogle Scholar
  9. Cooke, J.D., Larson, B., Oscarsson, O., and Sjölund, B. (1971b): Organization of afferent connections to cuneocerebellar tract. Exp. Brain Res., 13,359–377.PubMedGoogle Scholar
  10. Eccles, J.C., Sabah, N.H., Schmidt, R.F., and Taborikova, H. (1972a): Cutaneous mechanoreceptors influencing impulse discharges in cerebellar cortex. I. In mossy fibers. Exp. Brain Res., 15, 245–260.CrossRefGoogle Scholar
  11. Eccles, J.C., Sabah, N.H., Schmidt, R.F., and Taborikova, H. (1972b): Cutaneous mechanoreceptors influencing impulse discharges in cerebellar cortex. II. In Purkinje cells by mossy fiber input. Exp. Brain Res., 15, 261–277.Google Scholar
  12. Eccles, J.C., Sabah, N.H., Schmidt, R.F. and Taborikova, H. (1972c): Cutaneous mechanoreceptors influencing impulse discharges in cerebellar cortex. III. In Purkinje cells by climbing fiber input. Exp. Brain Res., 15, 484–497.Google Scholar
  13. Eccles, J.C., Sabah, N.H., Schmidt, R.F., and Taborikova, H. (1972d): Integration by Purkinje cells of mossy and climbing fiber inputs from cutaneous mechanoreceptors. Exp. Brain Res., 15,498–520.PubMedCrossRefGoogle Scholar
  14. Gordon, G., and Seed, W.A. (1961): An investigation of the nucleus gracilis of the cat by antidromic stimulation. J. Physiol, 155, 589–601.PubMedGoogle Scholar
  15. Haring, J.H., Rowinski, M.J., and Pubols, B.H. (1984): Electrophysiology of raccoon cuneocerebellar neurons Somatosens. Res., 1, 247–264.Google Scholar
  16. Hobson, J.A., and McCarley, R.W. (1972): Spontaneous discharge rates of cat cerebellar Purkinje cells in sleep and waking. Electroenceph. Clin. Neurophysiol., 33, 457–469.PubMedCrossRefGoogle Scholar
  17. Ishikawa, K., Kawaguchi, S., and Rowe, M.J. (1972a): Actions of afferent impulses from muscle receptors on cerebellar Purkinje cells. I. Response to muscle vibrations. Exp. Brain Res., 15, 177–193.Google Scholar
  18. Ishikawa, K., Kawaguchi, S., and Rowe, M.J. (1972b): Actions of afferent impulses from muscle receptors on cerebellar Purkinje cells. II. Responses to muscle contraction: Effects mediated via the climbing fiber pathway. Exp. Brain Res., 16, 104–114.Google Scholar
  19. Johnson, J.I, Welker, W.I, and Pubols, B.H. (1968): Somatotopic organization of raccoon dorsal column nuclei. J. Comp. Neurol, 132, 1–44.PubMedCrossRefGoogle Scholar
  20. Kolb, F.P, and Rubia, F.J. (1980): Information about peripheral events conveyed to the cerebellum via the climbing fiber system in the decerebrate cat. Exp. Brain Res., 38, 363–373.PubMedCrossRefGoogle Scholar
  21. Leicht, R.; Rowe, M.J, and Schmidt, R.F. (1973): Cutaneous convergence onto the climbing fiber input to cerebellar Purkinje cells. J. Physiol, 228,610–618Google Scholar
  22. Llinás, R, Precht, W, and Clarke, M. (1971): Cerebellar Purkinje cells responses to physiological stimulation of vestibular system in the frog. Exp. Brain Res., 13, 408–431.PubMedCrossRefGoogle Scholar
  23. Maekawa, K, and Simpson, J.I. (1972): Climbing fiber activation of Purkinje cells in the flocculus by impulses transferred through the visual pathway. Brain Res., 39, 245–251.PubMedCrossRefGoogle Scholar
  24. Mano, N. (1970): Changes of simple and complex spike activity of cerebellar Purkinje cells with sleep and waking. Science, 170, 1325–1327.PubMedCrossRefGoogle Scholar
  25. Marchesi, G.F, and Strata, P. (1970): Climbing fibers of cat cerebellum: Modulation of activity during sleep. Brain Res., 17, 145–148.PubMedCrossRefGoogle Scholar
  26. Marini, G, Provini, L, and Rosina, A. (1976): Gravity responses of Purkinje cells in the nodulus. Exp. Brain Res., 24,311–323.PubMedCrossRefGoogle Scholar
  27. Marini, R., Rubia, F.J., Kolb, F.P., and Bauswein, E. (1982): Cortical influence upon cerebellar Purkinje cells responding to natural, peripheral stimulation in the cat. Neuroscience Letters, 33, 55–59.PubMedCrossRefGoogle Scholar
  28. Paino, C.L. (1988): Conexiones efferentes del nucleus cuneatus en el gato. Doctoral dissertation, Universidad Complutense, Madrid.Google Scholar
  29. Rubia, F. J., and Kolb, F.P. (1978): Responses of cerebellar units to a passive movement in the decerebrate cat. Exp. Brain Res., 31, 387–401.PubMedCrossRefGoogle Scholar
  30. Rubia, F.J., and Tandler, R. (1981): Spatial distribution of afferent information to the anterior lobe of the cat’s cerebellum. Exp. Brain Res., 42, 249–259.PubMedCrossRefGoogle Scholar
  31. Rushmer, D.S., Roberts, W.J., and Augter, G.K. (1976): Climbing fiber responses of cerebellar Purkinje cells to passive movements of the cat forepaw. Brain Res., 106, 1–20.PubMedCrossRefGoogle Scholar
  32. Rustioni, A., Schmechel, D.E., Cheema, S., and Fitzpatrik, D. (1984): Glutamic acid decarboxylase containing neurons in the dorsal column nuclei of the cat. Somatosen. Res., 1, 329–357.CrossRefGoogle Scholar
  33. Simpson, J.I., and Alley, E. (1974): Visual climbing fiber input to rabbit vestibulo-cerebellum: A source of direction-specific information. Brain Res., 82, 302–308.PubMedCrossRefGoogle Scholar
  34. Wiberg, M., and Blomqvist, A. (1984): The projection to the mesencephalon from the dorsal column nuclei: An anatomical study in the cat. Brain Res., 311, 225–244.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • Francisco J. Rubia

There are no affiliations available

Personalised recommendations