Skip to main content

Electrophysiology of the Human Auditory System

  • Chapter
The Mammalian Auditory Pathway: Neurophysiology

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 2))

Abstract

Human auditory electrophysiology consists almost entirely of “evoked potentials,” recorded from surface areas, usually from the scalp and to a lesser degree from the middle ear and from the brain. All of these recordings are summated field potentials, that is, the summation of responses from many neurons, recorded from locations relatively remote to the individual neurons. Auditory evoked potentials (AEPs) can be recorded from all levels of the auditory system. They are usually grouped by the time of occurrence after the onset of the stimulus, and this grouping corresponds roughly to the site of generation. The potentials reviewed in this chapter are outlined in Table 6.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achor LF, Starr A (1980a) Auditory brainstem responses in the cat. I. Intracranial and extracranial recordings. Electroenceph Clin Neurophysiol 48:154–173.

    PubMed  CAS  Google Scholar 

  • Achor LF, Starr A (1980b) Auditory brainstem responses in the cat. II. Effects of lesions. Electroenceph Clin Neurophysiol 48:174–190.

    PubMed  CAS  Google Scholar 

  • Alho K, Sainio K, Sajaniemi N, Reinikainen K, Näätänen R (1990) Event-related brain potential of human newborns to pitch change of an acoustic stimulus. Electroenceph Clin Neurophysiol 77:151–155.

    PubMed  CAS  Google Scholar 

  • Allen RA, Starr A (1978) Auditory brain stem potentials in monkey (M. mulatta) and man. Electroenceph Clin Neurophysiol 45:53–63.

    PubMed  CAS  Google Scholar 

  • Amaral DG, Kurz J (1985) Analysis of the origin of the cholinergic and non-cholinergic septal projections to the hippocampal formation of the rat. J Comp Neurol 240:37–59.

    PubMed  CAS  Google Scholar 

  • Anderson DS, Kemp DT (1979) The evoked cochlear mechanical response in laboratory primates. Arch Otorhinolaryngol 224:47–54.

    PubMed  CAS  Google Scholar 

  • Arezzo J, Pickoff A, Vaughan HG (1975) The sources and intracerebral distribution of auditory evoked potentials in the alert rhesus monkey. Brain Res 90:57–73.

    PubMed  CAS  Google Scholar 

  • Backs RW (1987) Stimulus intensity and task complexity effects of late components of the event-related potential. Current Trends in Event-Related Potentials Research. Electroenceph Clin Neurophysiol Suppl 40:163–169.

    CAS  Google Scholar 

  • Baribeau-Braunn J, Picton TW, Gosselin J-Y (1983) Schizophrenia: A neurophysiological evaluation of abnormal information processing. Science, 219:874–876.

    Google Scholar 

  • Bentin S, McCarthy G, Wood CC (1985) Event-related potentials, lexical decision and semantic priming. Electroenceph Clin Neurophysiol 60:343–355.

    PubMed  CAS  Google Scholar 

  • Besson M, Macar F (1987) An event-related potential analysis of incongruity in music and other non-lingual contexts. Psychophysiol 24:14–25.

    CAS  Google Scholar 

  • Besson M, Macar F, Pynte J (1984) Is N400 specifically related to the processing of semantic mismatch? Soc Neurosci Abstr 10:841.

    Google Scholar 

  • Boddy J (1981) Evoked potentials and the dynamics of language processing. Biol Psychol 13:125–140.

    PubMed  CAS  Google Scholar 

  • Bonfils P, Uziel A, Narcy P (1988) Cochlear otoacoustic emissions in pediatric audiology. Ann Otolaryngol (Paris) 105:109–113.

    CAS  Google Scholar 

  • Bonfils P, Uziel A, Pujol P (1988) Evoked otoacoustic emissions from adults and infants: Clinical applications. Acta Otolaryngol 105:445–449.

    PubMed  CAS  Google Scholar 

  • Borg E (1981) Physiological mechanisms in auditory brainstem evoked response. In: T Lundborg (ed) Scandinavian Symposium of Brain Stem Response (ABR). Scand Audiol Suppl 13, p. 11.

    Google Scholar 

  • Brown WS, Marsh JT, Smith JC (1973) Contextual meaning effects on speech evoked potentials. Behav Biol 9:755–761.

    PubMed  CAS  Google Scholar 

  • Brown WS, Marsh JT, Smith JC (1976) Evoked potential waveform differences produced by the perception of different meanings of an ambiguous phrase. Electroenceph Clin Neurophysiol 41:113–123.

    PubMed  CAS  Google Scholar 

  • Brown WS, Marsh JT, Larue A (1982) Event-related potentials in psychiatry: Differentiating depression and dementia in the elderly. Bull LA Neurol Soc 47:91–107.

    CAS  Google Scholar 

  • Brownell WE (1983) Observations on a motile response in isolated outer hair cells. In: Webster WR, Aitken LM (eds) Mechanisms of Hearing. Monash University Press, pp. 5–10.

    Google Scholar 

  • Brownell W (1990) Outer hair cell electromotility and otoacoustic emissions. Ear Hear (in press).

    Google Scholar 

  • Buchwald JS (1983) Generators. In: Moore EJ (ed) Bases of Auditory Brain-Stem Evoked Responses. New York: Grune and Stratton, pp. 157–195.

    Google Scholar 

  • Buchwald JS, Huang C-M (1975) Farfield acoustic response: origins in the cat. Science 189:382–384.

    PubMed  CAS  Google Scholar 

  • Buchwald JS, Squires NS (1982) Endogenous auditory potentials in the cat. In: Woody C (ed) Conditioning: Representation of Involved Neural Function. New York: Plenum Press, pp. 503–515.

    Google Scholar 

  • Buchwald JS, Hinman C, Norman RS, Huang CM, Brown KA (1981) Middle- and long-latency auditory evoked potentials recorded from the vertex of normal and chronically lesioned cats. Brain Res 205:91–109.

    PubMed  CAS  Google Scholar 

  • Buchwald J, Erwin R, Schwafel T, Tanguay P (1988) Abnormal P1 potentials in autistic subjects. Abstract, Neurosci 771.

    Google Scholar 

  • Buchwald JS, Erwin RJ, Read S, Van Lancker D, Cummings JL (1989) Midlatency auditory evoked responses: differential abnormality of P1 in Alzheimer’s disease. Electroenceph Clin Neurophysiol 74:378–384.

    PubMed  CAS  Google Scholar 

  • Cacace AT, Satya-Murti S, Wolpaw JR (1990) Human middle-latency auditory evoked potentials: vertex and temporal components. Electroenceph Clin Neurophysiol 77:6–18.

    PubMed  CAS  Google Scholar 

  • Caird DM, Klinke R (1987) The effect of inferior colliculus lesions on auditory evoked potentials. Electroenceph Clin Neurophysiol 68:237–240.

    PubMed  CAS  Google Scholar 

  • Caird DM, Sontheimer D, Klinke R (1985) Intra- and extracranially recorded auditory evoked potentials in the cat. I. Source location and binaural interaction. Electroenceph Clin Neurophysiol 61:50–60.

    PubMed  CAS  Google Scholar 

  • Celesia GC (1986) Auditory evoked response. Arch Neurol 19:430–437.

    Google Scholar 

  • Celesia GG (1976) Organization of auditory cortical areas in man. Brain 99:403–414.

    PubMed  CAS  Google Scholar 

  • Chatrian GE, Peterson MC, Lazerte JA (1960) Responses to clicks from the human brain: Some depth electrographic observations. Electroenceph Clin Neurophysiol 12:479–489.

    PubMed  CAS  Google Scholar 

  • Chayasirisobhon S, Brinkman S, Gerganoff S, Gershon S, Pomara N, Green V (1985) Event-related potential in Alzheimer disease. Clin Electroenceph 16:48–53.

    CAS  Google Scholar 

  • Chen BM, Buchwald JS (1986) Midlatency auditory evoked responses: Differential effects of sleep in the cat. Electroenceph Clin Neurophysiol 65:373–382.

    PubMed  CAS  Google Scholar 

  • Chiappa KH (1983) Evoked Potentials in Clinical Medicine. New York: Raven Press.

    Google Scholar 

  • Ciesielki K, Courcheone E, and Elmasian R, (1990) Effects of focused selective attention tasks on event-related potentials in autistic and normal individuals. Neurophysiology 75:207–220.

    Google Scholar 

  • Clemis JD, McGee T (1979) Brainstem electric response audiometry in the differential diagnosis of acoustic tumors. Laryngoscope 84:31–42.

    Google Scholar 

  • Coats AC (1986) Electrocochleography: Recording techniques and clinical applications. Seminars in Hearing 7:247–266.

    Google Scholar 

  • Coats AC, Martin JL (1977) Human auditory nerve action potentials and brain stem evoked responses: Effects of audiogram shape and lesion location. Arch Otolaryngol 103:605–622.

    PubMed  CAS  Google Scholar 

  • Cohen MM (1982) Coronal topography of the middle latency auditory evoked potential in man. Electroenceph Clin Neurophysiol 53:231–236.

    PubMed  CAS  Google Scholar 

  • Cohen SN, Syndulko K, Rever B, Kraut J, Coburn J, Tourtellotte WW (1983) Visual evoked potentials and long latency event-related potentials in chronic renal failure. Neurology 33:1219–1222.

    PubMed  CAS  Google Scholar 

  • Collett L, Duelaux R, Challand MJ, Revol M (1988) Effect of sleep on middle latency response (MLR) in infants. Brain and Development 10:169–173.

    Google Scholar 

  • Comperatore CA, Patterson JH (1988) Mapping of cortical auditory middle latency responses in the chinchilla. Association for Research in Otolaryngology, 11th Midwinter Meeting, Abstract, 75.

    Google Scholar 

  • Courchesne E (1978) Neurophysiological correlates of cognitive development: Changes in long-latency event-related potentials from childhood to adulthood. Electroenceph Clin Neurophysiol 45:468–482.

    PubMed  CAS  Google Scholar 

  • Courchesne E (1990) Chronology of postnatal brain development: Event related potential, positron emission tomography, myelinogenesis and synaptogenesis studies. In: J Rohrbaugh, R Parasuraman, R Johnson (eds). Event Related Brain Potentials, Oxford University Press, NY.

    Google Scholar 

  • Csèpe V, Karmos G, Molnár M (1987) Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat—animal model of mismatch negativity. Electroenceph Clin Neurophysiol 66:571–578.

    PubMed  Google Scholar 

  • Curry SH, Woods DL, Low MD (1986) Applications of cognitive ERPs in Neurosurgical and Neurological Patients Cerebral Psychophysiology: Studies in Event-Related Potentials (EEG Suppl. 38). McCallum WC, Zappoli R and Denoth F (eds), Amsterdam: Elsevier, pp. 469–484.

    Google Scholar 

  • Davis H, Hirsch SK (1976) The audiometric utility of brain stem responses to low-frequency sounds. Audiology 15:181–195.

    PubMed  CAS  Google Scholar 

  • Davis H, Hirsch SK (1979) A slow brain stem response for low-frequency audiometry. Audiology 18:445–461.

    PubMed  CAS  Google Scholar 

  • Davis H, Onishi S (1969) Maturation of auditory evoked potentials. Int Audiol 8:24–33.

    Google Scholar 

  • Davis H, Hirsch SK, Shelnutt H, Bowers C (1967) Further validation of evoked response audiometry (ERA). J Speech Hear Res 10:717–732.

    PubMed  CAS  Google Scholar 

  • Davis PA (1939) Effects of acoustic stimuli on the waking human brain. J Neurophysiol 2:494–499.

    Google Scholar 

  • Desmedt JE, Debecker J (1979) Wave form and neural mechanism of the decision P350 elicited without pre-stimulus CNV or readiness potential in random sequences of near threshold auditory clicks and finger stimuli. Electroenceph Clin Neurophysiol 47:648–670.

    PubMed  CAS  Google Scholar 

  • Dieber MP, Ibanez V, Fischer C, Perrin F, Mauguiere F (1988) Sequential mapping favors the hypotheses of distinct generators for Na and Pa middle latency auditory evoked potentials. Electroenceph Clin Neurophysiol 71:187–197.

    Google Scholar 

  • Diner, Holcomb P, Dykman R (1985) P-300 in a major depressive disorder. Psychiatry Research 15:175–185.

    PubMed  CAS  Google Scholar 

  • Dobie RA, Berlin CI (1979) Binaural interaction in brainstem evoked response. Arch Otolaryngol 105:391–398.

    PubMed  CAS  Google Scholar 

  • Don M, Eggermont JJ, Brackmann DE (1979) Reconstruction of the audiogram using brain stem responses and high pass noise masking. Ann Otol Rhinol Laryngol 57(Suppl):1–20.

    Google Scholar 

  • Donald MW, Little R (1981) The analysis of stimulus probability inside and outside the focus of attention, as reflected by the auditory N1 and P3 components. Can J Psychol 35:175–187.

    PubMed  CAS  Google Scholar 

  • Donchin E (1981) Surprise!... Surprise? Psychophysiology 18:493–513.

    PubMed  CAS  Google Scholar 

  • Donchin E, Ritter W, McCallum C (1978) Cognitive psychophysiology: the endogenous components of the ERR In: Callaway E, Tueting P, Koslow S (eds) Brain Event-Related Potentials in Man. New York: Academic Press, pp. 424–437.

    Google Scholar 

  • Durrant JD (1986) Observations on combined noninvasive electrocochleography and auditory brainstem response recording. Seminars in Hearing 7:289–305.

    Google Scholar 

  • Dustman RE, Callner DA (1979) Cortical evoked responses and response decrement in nonretarded and Down’s syndrome individuals. Amer J Ment Defic 83:391–397.

    PubMed  CAS  Google Scholar 

  • Ebner A, Haas J, Lucking C, Schily M, Wallesch C, Zimmerman P (1986) Event-related brain potentials (P300) and neuropsychological deficit in patients with focal brain lesions. Neurosci Lett 64:330–334.

    PubMed  CAS  Google Scholar 

  • Eggermont JJ (1974) Basic principles of electrocochleography. In: Eggermont JJ, Odenthal DW, Schmidt PH, Spoor A (eds) Electrocochleography basic principles and clinical application. Acta Oto-Laryngol Suppl 316:1–84.

    Google Scholar 

  • Eggermont JJ, Odenthal DW (1974) Methods in electrocochleography. Acta Oto-laryng Suppl 316:17–24.

    CAS  Google Scholar 

  • Eggermont JJ, Don M, Brackmann DE (1980) Electrocochleography and auditory brainstem electric responses in patients with pontine angle tumors. Ann Otol Rhinol Laryngol 89 (Suppl 75):1–19.

    CAS  Google Scholar 

  • Elberling C (1976) Action potentials recorded from the promontory and the surface, compared with recordings from the ear canal in man. Scand Audiol 5:69–78.

    Google Scholar 

  • Elberling C, Bak B, Kofoed B, Lebech J, Saermark K (1980) Magnetic auditory responses from the human brain. Scand Audiol 9:185–190.

    PubMed  CAS  Google Scholar 

  • Elberling C, Bak C, Kofoed B, Lebech J, Saermark K (1982) Auditory magnetic fields from the human cerebral cortex: Location and strength of an equivalent current dipole. Acta Neurol Scand 65:553–569.

    PubMed  CAS  Google Scholar 

  • Elberling C, Parbo J, Johnsen J, Bagi P (1985) Evoked otoacoustic emissions: clinical applications. Acta Otolaryngol (Stockholm) Suppl 421:77–85.

    CAS  Google Scholar 

  • Engel R (1971) Early waves of the electroencephalic auditory response in neonates. Neuropaediatrie. 3:147–154.

    CAS  Google Scholar 

  • Engström H, Ades HW (1960) Effect of high-intensity noise on inner ear sensory epithelia. Acta Oto-Laryngol Supp 158:219–229.

    Google Scholar 

  • Erwin R, Buchwald JS (1986) Midlatency auditory evoked responses: Differential effects of sleep in the human. Electroenceph Clin Neurophysiol 65:383–392.

    PubMed  CAS  Google Scholar 

  • Erwin R, Mauhinney-Hec M, Gur RE (1988) Midlatency auditory evoked responses in schizophrenics. Abstract, Neurosci 14:339.

    Google Scholar 

  • Farley GR, Starr A (1983) Middle and long latency auditory evoked potentials in cat. II. Component distributions and dependence on stimulus factors. Hear Res 10:139–152.

    PubMed  Google Scholar 

  • Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prothesis utilizing event-related brain potentials. Electroenceph Clin Neurophysiol 70:510–523.

    PubMed  CAS  Google Scholar 

  • Finley WW, Faux SF, Hutcheson J, Amstutz L (1985) Long-latency event-related potentials in the evaluation of cognitive function in children. Neurology 35:323–327.

    PubMed  CAS  Google Scholar 

  • Fischler I, Bloom PA, Childers DG, Roucos SE, Perry Jr NW (1983) Brain potentials related to stages of sentence verification. Psychophysiology 20:400–409.

    PubMed  CAS  Google Scholar 

  • Ford JM, Mohs RC, Pfefferbaum A, Kopell BS (1980) On the utility of P3 latency and RT for studying cognitive processes. In: Kornhuber HH, Deecke L (eds) Motivation, Motor and Sensory Processes of the Brain. Progress in Brain Research, Vol. 54. Amsterdam: Elsevier, pp. 661–667.

    Google Scholar 

  • Ford JM, Roth WT, Mohs RC, Hopkins WF, Kopell BS (1979) Event-related potentials recorded from young and old adults during a memory retrieval task. Electroenceph Clin Neurophysiol 47:450–459.

    CAS  Google Scholar 

  • Galambos R, Makeig S, Talmachoff PJ (1981) A 40 Hz auditory potential recorded from the human scalp. Proc Nat Acad Sci 78:2643–2647.

    PubMed  CAS  Google Scholar 

  • Gardi JN (1985) Human brain stem and middle latency responses to electrical stimulation: a preliminary observation. In: Schindler R, Merzenich M (eds) Cochlear Implants. New York: Raven Press, pp. 351–363.

    Google Scholar 

  • Gardi JN, Berlin CI (1978) A preliminary report on the origin(s) of the binaural interaction components of the brainstem evoked response (BSER) in the guinea pig. Soc Neurosci 5:20.

    Google Scholar 

  • Geschwind N, Levitsky W (1968) Human brain: Left-right asymmetries in temporal speech region. Science 161:186–187.

    PubMed  CAS  Google Scholar 

  • Goff ER, Allison T, Vaughan Jr HG (1978) The functional neuroanatomy of event-related potentials. In: Callway E, Tueting P, Koslow SH (eds) Event-related potentials in Man. New York: Academic Press, pp. 1–79.

    Google Scholar 

  • Goodin DS, Aminoff MJ (1984) The relationship between the evoked potential and brain events in sensory discrimination and motor response. Brain 107:241–251.

    PubMed  Google Scholar 

  • Goodin DS, Squires KC, Henderson BH, Starr A (1978a) Age-related variations in evoked potentials to auditory stimuli in normal human subjects. Electroenceph Clin Neurophysiol 44:447–458.

    PubMed  CAS  Google Scholar 

  • Goodin DS, Squires K, Starr A (1978b) Long latency event-related components of the auditory evoked potential in dementia. Brain 101:635–648.

    PubMed  CAS  Google Scholar 

  • Goodin DS, Squires KC, Starr A (1983) Variations in early and late event-related components of the auditory evoked potential with task difficulty. Electroenceph Clin Neurophysiol 55:680–686.

    PubMed  CAS  Google Scholar 

  • Graham J, Greenwood R, Lecky B (1980) Cortical deafness: a case report and review of the literature. J Neurol Sci 48:35–49.

    PubMed  CAS  Google Scholar 

  • Grandori F (1983) Evoked otoacoustic emissions stimulus-response relationship. Rev Laryngol 104:153–155.

    CAS  Google Scholar 

  • Gravel J, Kurtzberg D, Stapells D, Vaughan H, Wallace I (1989) Case studies. Seminars in Hearing 10:272–287.

    Google Scholar 

  • Halgren E, Squires NK, Wilson CL, Rohrbaugh JR, Babb TL, Crandall PH (1980) Endogenous potentials generated in the human hippocampal formation and amygdala by infrequent events. Science 210:803–805.

    PubMed  CAS  Google Scholar 

  • Hall JW, Hargadine JR (1985) Sensory evoked responses in head injury. In: Central Nervous System Trauma, pp. 187–205.

    Google Scholar 

  • Hansch EC, Syndulko K, Cohen SM, Goldberg ZI, Potvin AR, Tourtellotte WW (1982) Cognition in Parkinson disease: An event-related potential perspective. Ann Neurol 599–607.

    Google Scholar 

  • Hansen JC, Hillyard SA (1980) Endogenous brain potentials associated with selective auditory attention. Electroenceph Clin Neurophysiol 49:277–290.

    PubMed  CAS  Google Scholar 

  • Hansen JC, Hillyard SA (1982) Selective attention to multi-dimensional auditory stimuli in man. J Exp Psych: Human Percept Perform 9:1–19.

    Google Scholar 

  • Harbin TJ, Marsh GR, Harvey MT (1984) Differences in the late components of the event-related potential due to age and to semantic and non-semantic tasks. Electroenceph Clin Neurophysiol 59:489–496.

    PubMed  CAS  Google Scholar 

  • Hari R, Aittoniemi K, Jarvinen ML, Katila T, Varpula T (1980) Auditory evoked transient and sustained magnetic fields of the human brain. Exp Brain Res 40:237–240.

    PubMed  CAS  Google Scholar 

  • Hari R, Pelizzone M, Mäkelä JP, Hällström J, Leinonen L, Lounasmaa OV (1987) Neuromagnetic responses of the human auditory cortex to on- and offsets of noise bursts. Audiology 26:31–43.

    PubMed  CAS  Google Scholar 

  • Harris FP, Glattke TJ (1988) Distortion-product emissions in human with high-frequency sensorineural hearing loss. J Acoust Soc Am Suppl 1:84:S74.

    Google Scholar 

  • Harrison J, Buchwald J (1985) Aging changes in the cat P300 mimic the human. Electroenceph Clin Neurophysiol 62:227–234.

    PubMed  CAS  Google Scholar 

  • Harrison J, Buchwald J, Kaga K (1986) Cat P300 present after primary auditory cortex ablation. Electroenceph Clin Neurophysiol 63:180–187.

    PubMed  CAS  Google Scholar 

  • Harrison JB, Buchwald JS, Kaga K, Woolf NJ, Butcher LL (1988) Cat P300 disappears after septal lesions. Electroenceph Clin Neurophysiology 69:55–64.

    CAS  Google Scholar 

  • Hashimoto I, Ishiyama Y, Yoshimoto T, Nemoto S (1981) Brainstem auditory-evoked potentials recorded directly from the human brainstem and thalamus. Brain 104:841–859.

    PubMed  CAS  Google Scholar 

  • Hayes D, Jerger J (1982) Auditory brainstem responses (ABR) to tone-pips: results in normal and hearing-impaired subjects. Scand Audiol 11:133.

    PubMed  CAS  Google Scholar 

  • Hecox K, Galambos R (1974) Brain stem auditory evoked responses in human infants and adults. Arch Otolaryngol 99:30–33.

    PubMed  CAS  Google Scholar 

  • Henry KR (1979) Auditory brainstem volume conducted responses. Origins in the laboratory mouse. J Amer Aud Soc 4:173–178.

    CAS  Google Scholar 

  • Herning RI, Jones RT, Hunt JS (1987) Speech event related potentials reflect linguistic content and processing level. Brain Lang 30:116–129.

    PubMed  CAS  Google Scholar 

  • Herning RI, Speer M, Jones RT (1987) Event-related potentials to spoken equations: Is the N400 really a late N200? In: Johnson Jr. R, Rohrbaugh JW, Parasuraman R (eds) Current Trends in Event-related Potentials Research, EEG Suppl 40:394–398.

    Google Scholar 

  • Hillyard SA, Kutas M (1983) Electrophysiology of cognitive processing. Annu Rev Psychol 34:33–61.

    PubMed  CAS  Google Scholar 

  • Hillyard SA, Picton TW (1979) Event-related brain potentials and selective information processing in man. In: Desmedt JE (ed) Progress in Clinical Neurophysiology, Vol. 6. Basel: Karger, pp. 1–50.

    Google Scholar 

  • Hillyard SA, Hink RF, Schwent VL, Picton TW (1973) Electrical signs of selective attention in the human brain. Science 182:177–180.

    PubMed  CAS  Google Scholar 

  • Hink RF, Hillyard SA, Benson PJ (1978) Electrophysiological measures of attentional processes in man as related to the study of schizophrenia. J Psychiatr Res 14:155–65.

    PubMed  CAS  Google Scholar 

  • Hinman CL, Buchwald JS (1983) Depth evoked potential and single unit correlates of vertex midlatency auditory evoked responses. Brain Res 264:57–67.

    PubMed  CAS  Google Scholar 

  • Hirabayashi M (1979) The middle components of the auditory electric response. I. On their variation with age. J Otolaryngol Jpn 82:449–456.

    CAS  Google Scholar 

  • Hood LJ, Martin DA, Berlin CI (1990) Auditory evoked potentials differ at 50 milliseconds in right and left-handed listeners. Hear Res 45:115–122.

    PubMed  CAS  Google Scholar 

  • Huang C-M, Buchwald JS (1977) Interpretation of the vertex short latency acoustic response: a study of single neurons in the brainstem. Brain Res 137:291–303.

    PubMed  CAS  Google Scholar 

  • Irvine DRF, Phillips DP (1982) Polysensory ‘association’ areas of the cerebral cortex. Organization of acoustic input in the cat. In: Woolsey CN (ed) Cortical Sensory Organization: Multiple Auditory Areas. Clinton, NJ: Humana Press, pp. 111–156.

    Google Scholar 

  • Jacobson GP, Grayson AS (1988) The normal scalp topography of the middle latency auditory evoked potential Pa component following monaural click stimulation. Brain Topography 1:29–36.

    PubMed  CAS  Google Scholar 

  • Jerger J, Neely JG, Jerger S (1980) Speech, impedance and auditory brainstem response audiometry in brainstem tumors. Arch Otolaryngol 106:218–223.

    PubMed  CAS  Google Scholar 

  • Jewett DL (1970) Volume-conducted potentials in response to auditory stimuli as detected by averaging in the cat. Electroenceph Clin Neurophysiol 28:609–618.

    PubMed  CAS  Google Scholar 

  • Johnsen NJ, Bagi P, Elberling C (1983) Evoked otoacoustic emissions from the human ear. III. Findings in neonates. Scand Audiol 12:17–24.

    PubMed  CAS  Google Scholar 

  • Johnson R, Fedio P (1987) Task related changes in P-300 scalp distribution in temporal lobectomy patients. In: Johnson R, Rohrbaugh J, Parasuraman R (eds) Current Trends in Evoked Potential Research. Electroenceph Clin Neurophysiol Suppl 40:699–704.

    Google Scholar 

  • Kaga K, Hink R, Shinoda Y, Suzuki J (1980) Evidence for a primary cortical origin of a middle latency auditory evoked potential in cats. Electroenceph Clin Neurophysiol 50:254–266.

    PubMed  CAS  Google Scholar 

  • Katayama Y, Tsukiyama T, Tsubokawa T (1985) Thalamic negativity associated with the endogenous late positive component of cerebral evoked potentials (P300): Recordings using discriminitive aversive conditioning in humans and cats. Brain Research Bulletin 14:223–226.

    PubMed  CAS  Google Scholar 

  • Kavanaugh KT, Gould H, McCormick G, Franks R (1989) Comparison of the identifiability of the low intensity ABR and MLR in the mentally handicapped patient. Ear Hear 10:124–130.

    Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emission from the human auditory system. J Acoust Soc Am 64:1386–1391.

    PubMed  CAS  Google Scholar 

  • Kemp DT (1980) Towards a model for the origin of cochlear echoes. Hear Res 2:533–548.

    PubMed  CAS  Google Scholar 

  • Kemp DT, Brown AM (1983) A comparison of mechanical nonlinearities in the cochleae of man and gerbil from ear canal measurements. In: Klinke R, Hartmann R (eds) Hearing—Physiological Bases and Psychophysics. Berlin: Springer-Verlag, pp. 82–88.

    Google Scholar 

  • Kemp DT, Bray P, Alexander L, Brown AM (1986) Acoustic emission cochleography—practical aspects. Scand Audiol Suppl 25:71–95.

    PubMed  CAS  Google Scholar 

  • Kemp DT, Ryan S, Bray P (1990) A guide to the effective use of otoacoustic emissions. Ear Hear (in press).

    Google Scholar 

  • Kileny P (1981) The frequency specificity of tone-pip evoked auditory brainstem responses. Ear Hear 2:270–275.

    PubMed  CAS  Google Scholar 

  • Kileny P, Berry DA (1983) Selective impairment of late vertex and middle latency auditory evoked responses. In: Menches G, Gerber S, (eds) The Multiply Handicapped Hearing Impaired Child. New York: Grune and Stratton.

    Google Scholar 

  • Kileny PR, Kemink JL (1987) Electrically evoked middle-latency auditory potentials in cochlear implant candidates. Arch Otolaryngol Head Neck Surg 113:1072–1077.

    PubMed  CAS  Google Scholar 

  • Kileny P, Shea S (1986) Middle-latency and 40-Hz auditory evoked responses in normal-hearing subjects: click and 500-Hz thresholds. J Speech Hear Res 19:20–28.

    Google Scholar 

  • Kileny P, Paccioretti D, Wilson AF (1987) Effects of cortical lesions on middle-latency auditory evoked responses (MLR). Electroenceph Clin Neurophysiol 66:108–120.

    PubMed  CAS  Google Scholar 

  • Klein AJ (1983) Properties of the brainstem response slow-wave component. II. Frequency specificity. Arch Otolaryngol 109:74–78.

    PubMed  CAS  Google Scholar 

  • Klinke R, Fruhstorfer H, Finkenzellar P (1968) Evoked responses as a function of external and stored information. Electroenceph Clin Neurophysiol 25:119–122.

    PubMed  CAS  Google Scholar 

  • Knight RT, Hillyard SA, Woods D, Neville H (1980) The effects of frontal and temporal-parietal lesions on the auditory evoked response in man. Electroenceph Clin Neurophysiol 50:112–124.

    PubMed  CAS  Google Scholar 

  • Knight RT, Scabini D, Woods DL, Clayworth C (1988) The effects of lesions of superior temporal gyrus and inferior parietal lobe on temporal and vertex components of the human AEP. Electroenceph Clin Neurophysiol 70:499–509.

    PubMed  CAS  Google Scholar 

  • Kodera K, Yamane H, Yamada O, Suzuki J (1977) Brainstem response audiometry at speech frequencies. Audiology 16:469–479.

    PubMed  CAS  Google Scholar 

  • Kraus N, McGee T (1988) Color imaging of the human middle latency response. Ear Hear 9:159–167.

    PubMed  CAS  Google Scholar 

  • Kraus N, McGee T (1990) Clinical applications of the middle latency response. J Amer Acad Audiol 1:130–133.

    CAS  Google Scholar 

  • Kraus N, McGee T (1990) Topopgraphic mapping of the middle latency response. In: M. Hoke, F. Grandori, G. Romani (eds) Auditory Evoked Magnetic Fields and Potentials Adu Audiol 6: Kerger, Switzerland.

    Google Scholar 

  • Kraus N, McGee T (1991) Developments on MLR development. Amer Acad Audiol Abstr 3:29.

    Google Scholar 

  • Kraus N, McGee T, Comperatore C (1989) MLRs in children are consistently present during wakefulness, stage 1 and REM Sleep. Ear Hear 10:339–345.

    PubMed  CAS  Google Scholar 

  • Kraus N, Özdamar Ö, Hier D, Stein L (1982) Auditory middle latency responses in patients with cortical lesions. Electroenceph Clin Neurophysiol 54:247–287.

    Google Scholar 

  • Kraus N, Özdamar Ö, Heydemann PT, Stein L, Reed N (1984a) Auditory brainstem responses in hydrocephalic patients. Electroenceph Clin Neurophysiol 59:310–317.

    PubMed  CAS  Google Scholar 

  • Kraus N, Özdamar Ö, Stein L, Reed N (1984b) Absent auditory brain stem response: Peripheral hearing loss or brain stem dysfunction? Laryngoscope 94:400–406.

    PubMed  CAS  Google Scholar 

  • Kraus N, Smith DI, Grossmann J, Willott J, Erwin J (1985a) Auditory brainstem and middle latency responses in non-human primates. Hearing Res 17:219–226.

    CAS  Google Scholar 

  • Kraus N, Smith DI, Reed N, Stein L, Cartee C (1985b) Auditory middle latency responses in children: Effects of age and diagnostic category. Electroenceph Clin Neurophysiol 62:343–351.

    PubMed  CAS  Google Scholar 

  • Kraus N, Smith DI, McGee T, Stein L, Cartee C (1987) Development of the auditory middle latency response in an animal model and its relationship to the human response. Hearing Res 27:165–176.

    CAS  Google Scholar 

  • Kraus N, Smith DI, McGee T (1987) Rate and filter effects on the developing middle latency response. Audiology 26:257–268.

    PubMed  CAS  Google Scholar 

  • Kraus N, Smith DI, McGee T (1988) Midline and temporal lobe MLRs in the guinea pig originate from different generator systems: A conceptual framework for new and existing data. Electroenceph Clin Neurophysiol 70:541–558.

    PubMed  CAS  Google Scholar 

  • Kraus N, McGee T, Stein L (1991) The auditory middle latency response—1990. In: Jacobson J (ed) The Auditory Brainstem Response II. San Diego: College Hill Press (In press).

    Google Scholar 

  • Kraus N, McGee T, Littman T, Nicol T. (1992) Reticular formation influences on primary and non-primary auditory pathways as reflected by the middle latency response (in press).

    Google Scholar 

  • Kurtzberg D, Vaughan HG, Kreuzer JA (1979) Task-related cortical potentials in children. Prog Clin Neurophysiol 6:216–223.

    Google Scholar 

  • Kurtzberg D, Hilpert P, Kreuzer J, Vaughan HG (1984) Differential maturation of cortical auditory evoked potentials to speech sounds in normal fullterm and very low-birthweight infants. Dev Med Child Neurol 26:466–475.

    PubMed  CAS  Google Scholar 

  • Kurtzberg D, Vaughan HG, Courchesne E, Friedman D, Harter MR, Putnam LE (1984) Developmental aspects of event-related potentials. Ann NY Acad Sci 425:300–318.

    PubMed  CAS  Google Scholar 

  • Kurtzberg D, Stapells DR, Wallace IF (1988) Event-related potential assessment of auditory system integrity: Implications for language development. In: Vietze P, Vaughan Jr., HG (eds) Early identification of infants with developmental disabilities. Philadelphia: Grune and Stratton, pp. 160–180.

    Google Scholar 

  • Kutas M, Hillyard SA (1980a) Event-related brain potentials to semantically inappropriate and surprisingly large words. Biol Psychol 11:99–115.

    PubMed  CAS  Google Scholar 

  • Kutas M, Hillyard SA (1980b) Reading senseless sentences: Brain potentials reflect semantic incongruity. Science 207:203.

    PubMed  CAS  Google Scholar 

  • Kutas M, Hillyard SA (1982) The lateral distribution of event-related potentials during natural sentence processing. Neuropsychologia 20:579–590.

    PubMed  CAS  Google Scholar 

  • Kutas M, Hillyard SA (1983) Event-related brain potentials to grammatical errors and semantic anomalies. Mem Cogn 11:539–550.

    CAS  Google Scholar 

  • Kutas M, Hillyard SA (1984) Event-related brain potentials (ERPs) elicited by novel stimuli during sentence processing. In: Karrer R, Cohen J, Tueting P (eds) Brain and Information: Event-related potentials. Ann NY Acad Sci, Vol. 425, pp. 236–241.

    Google Scholar 

  • Kutas M, Neville HJ, Holcomb P (1987) A preliminary comparison of the N400 response to semantic anomalies during reading, listening and signing. In: Ellington RJ, Murray NMF, Halliday AM (eds). The London Symposia. EEG Suppl. 39, pp. 325–330.

    Google Scholar 

  • Kutas M, Van Petten C (1987) Event related brain potential studies of language. In: P. Ackles, J. Jennings, M. Coles (eds) Advances in Psychobiology, Greenwich CT, JAI Press.

    Google Scholar 

  • Kutas M, Van Petten C, Besson M (1988) Event-related potential asymmetries during the reading of sentences. Electroenceph Clin Neurophysiol 69:218–233.

    PubMed  CAS  Google Scholar 

  • Lee YS, Lueders H, Dinner DS, Lesser RP, Hahn J, Klem G (1984) Recording of auditory evoked potentials in man using chronic subdural electrodes. Brain Res 107:115–131.

    Google Scholar 

  • Legatt AD, Arezzo JC, Vaughan Jr HG (1986a) Short-latency auditory evoked potentials in the monkey. I. Wave shape and surface topography. Electroenceph Clin Neurophysiol 64:41–52.

    PubMed  CAS  Google Scholar 

  • Legatt AD, Arezzo JC, Vaughan Jr HG (1986b) Short-latency auditory evoked potentials in the monkey. II. Intracranial generators. Electroenceph Clin Neurophysiol 64:53–73.

    PubMed  CAS  Google Scholar 

  • Lev A, Sohmer H (1972) Sources of averaged neural responses recorded in animal and human subjects during cochlear audiometry (electro-cochleogram). Arch Klin Exp Ohren Nasen Kehikopfheilkd 201:79–90.

    CAS  Google Scholar 

  • Lieberman AM, Cooper FS, Shankweiler DP, Studdert-Kennedy M (1967) Perception of the speech code. Psychol Rev 74:431–461.

    Google Scholar 

  • Lincoln A, Courchesne E, Kliman B, Galambos R (1985) Neuropsychological correlates of information processing by children with Down’s syndrome. Am J Ment Def 89:403–414.

    CAS  Google Scholar 

  • Littman T, Kraus N, McGee T, Nicol T (1992) Binaural stimulation reveals functional differences between midline and temporal components of the middle latency response in guinea pigs. Electroenceph Clin Nemophysiol (in press).

    Google Scholar 

  • Loiselle DL, Stamm JA, Maitinsky S, Whipple SC (1980) Evoked potential and behavioral signs of attentive dysfunctions in hyperactive boys. Psychophysiol 17:193–201.

    CAS  Google Scholar 

  • Long GR, Tubis A (1988) Modification of spontaneous and evoked otoacoustic emissions and associated psychoacoustic microstructure by aspirin consumption. J Acoust Soc Am 84:1343–1353.

    PubMed  CAS  Google Scholar 

  • Lonsbury-Martin BL, Martin G (1990) The clinical utility of distortion-product otoacoustic emissions. Ear Hear 11:144–154.

    PubMed  CAS  Google Scholar 

  • Lonsbury-Martin BL, Harris FP, Hawkins MD, Stagner BB, Martin GK (1990) Distortion product emissions in humans: I. Basic properties in normally hearing subjects. Ann Oto Rhino Laryngol Suppl 47:3–14.

    Google Scholar 

  • Lovrich D, Novick B, Vaughan Jr. HG (1988) Topographic analysis of auditory event-related potentials associated with acoustic and semantic processing. Electroenceph Clin Neurophysiol 71:40–54.

    PubMed  CAS  Google Scholar 

  • Lutman ME, Fleming AJ (1988) The prevalence of click-evoked otoacoustic emissions in adults with normal and impaired hearing. Br J Audiol 22:145.

    Google Scholar 

  • Marsh JT, Brown WS, Smith JC (1975) Far-field recorded frequency-following responses: correlates of low pitch auditory perception in humans. Electroenceph Clin Neurophysiol 38:113–119.

    PubMed  CAS  Google Scholar 

  • Martin GK, Probst R, Lonsbury-Martin BL (1990). Otoacoustic emissions in human ears: normative findings. Ear Hear 11:106–20.

    PubMed  CAS  Google Scholar 

  • Martineau J, Garreau B, Barthelemy C, Callaway E, Lelord G (1981) Effects of vitamin B6 on averaged evoked potentials in infantile autism. Biol Psychiatry 16:625–639.

    Google Scholar 

  • Mauldin L, Jerger J (1979) Auditory brain stem evoked response to bone-conducted signals. Arch Otolaryngol 105:656–661.

    PubMed  CAS  Google Scholar 

  • McCallum WC, Curry SH (1979) Hemisphere differences in event related potentials and CNVs associated with monaural stimuli and laterized motor responses. In: Lehmann D, Callaway E (eds) Human Evoked Potentials: Applications and Problems. New York: Plenum, pp. 235–250.

    Google Scholar 

  • McCallum WC, Curry SH (1980) The form and distribution of auditory evoked potentials and CNVs when stimuli and responses are lateralized. In: Kornhuber HH, Deecke L (eds) Progress in Brain Research, Vol. 54. Motivation, Motor and Sensory Processes of the Brain: Electrical Potentials, Behaviour and Clinical Use. Amsterdam: Elsevier, pp. 767–775.

    Google Scholar 

  • McCallum WC, Farmer SF, Pocock PK (1984) The effects of physical and semantic incongruities on auditory event-related potentials. Electroenceph Clin Neurophysiol 59:477–488.

    PubMed  CAS  Google Scholar 

  • McCarthy G, Wood CC, Alison T, Goff WR, Williamson PD, Spencer DD (1982) Intracranial recordings of event-related potentials in humans engaged in cognitive tasks. Soc Neurosci Abst 8:976.

    Google Scholar 

  • McFadden D, Plattsmier HS (1984) Aspirin abolishes spontaneous oto-acoustic emissions. J Acoust Soc Am 76:443–448.

    PubMed  CAS  Google Scholar 

  • McGee TJ, Clemis JD (1980) Audiogram derivation with brainstem electric response. Otolaryngol Head Neck Surg 88:295–303.

    PubMed  CAS  Google Scholar 

  • McGee TJ, Clemis JD (1982) The effects of conductive hearing loss on the auditory brainstem response. Ann Otol Rhino Laryngol 91:304–309.

    CAS  Google Scholar 

  • McGee T, Kraus N, Comperatore C, Nicol T (1991) Subcortical and cortical components of the MLR generating system. Brain Res 544:211–220.

    PubMed  CAS  Google Scholar 

  • McGee TJ, Kraus N, Wolters C (1988) Viewing the audiogram through a mathematical model. Ear Hear 9:153–156.

    PubMed  CAS  Google Scholar 

  • McGee T, Özdamar Ö, Kraus N (1983) Auditory middle latency responses in the guinea pig. Am J Otolaryngol 4:116–122.

    PubMed  CAS  Google Scholar 

  • McGee T and Kraus N. The reliable MLR: Monitoring sleep state during MLR testing. Int Elec Resp Aud St Grp Abst, 1991.

    Google Scholar 

  • McGee T, Kraus N, Littman T, Nicol T (1992) Contributions medial geniculate body subdivisions to the middle latency response. Hear Res (in press).

    Google Scholar 

  • Michalewski H, Rosenberg C, Starr A (1986) Event related potentials in dementia. In: Cracco R, Bodis-Wollner I (eds) Evoked potentials. New York: Alan R. Liss, Inc., pp. 521–528.

    Google Scholar 

  • Michel F, Peronnet F, Schott B (1980) A case of cortical deafness: clinical and electrophysiological data. Brain Lang 10:367–377.

    PubMed  CAS  Google Scholar 

  • Miyamoto RT (1986) Electrically evoked potential in cochlear implant subjects. Laryngoscope 96:178–185.

    PubMed  CAS  Google Scholar 

  • Molfese DL (1979) Cortical involvement in the semantic processing of coarticulated speech cues. Brain Lang 7:86–100.

    PubMed  CAS  Google Scholar 

  • Molfese DL, Molfese VJ (1979) Hemisphere and stimulus differences as reflected in the cortical responses of newborn infants to speech stimuli. Dev Psychol 15:505–511.

    Google Scholar 

  • Møller AR (1988) Evoked potentials in intraoperative monitoring. Baltimore: Williams & Williams Co.

    Google Scholar 

  • Møller AR, Burgess J (1986) Neural generators of the brain-stem auditory evoked potentials (BAEPs) in the rhesus monkey. Electroenceph Clin Neurophysiol 65:361–372.

    PubMed  Google Scholar 

  • Møller AR, Jannetta PJ (1982) Auditory evoked potentials recorded intracranially from the brainstem in man. Exp Neuro 78:144–157.

    Google Scholar 

  • Møller AR, Jannetta PJ (1983) Interpretation of brainstem auditory evoked potentials: Results from intracranial recordings in humans. Scand Audiology (Stockholm) 12:125–133.

    Google Scholar 

  • Møller AR, Jannetta PJ (1984) Neural generators of the brainstem auditory evoked potentials. (BAEP). In: Nodar RH, Barber C (eds) Evoked Potentials II: The Second International Evoked Potentials Symposium (Cleveland, 1982), Boston: Butterworth Inc., pp. 137–144.

    Google Scholar 

  • Møller AR, Jannetta PJ (1985) Neural generators of the auditory brainstem response. In: Jacobson J (ed) The Auditory Brainstem Response. San Diego: College Hill Press.

    Google Scholar 

  • Møller AR, Jannetta PJ (1986) Simultaneous surface and direct brainstem recordings of brainstem auditory evoked potentials (BAEP) in man. In: Cracco RQ, Bodis-Wollner I (eds) Evoked Potentials. New York: Alan R. Liss, Inc., pp. 227–234.

    Google Scholar 

  • Møller AR, Jannetta PJ, Møller MB (1981) Neural generators of brainstem evoked potentials. Results from human intracranial recordings. Ann Otorhinolaryngol 90:591–596.

    Google Scholar 

  • Møller AR, Jannetta P, Bennett M, Møller MB (1981) Intracranially recorded responses from the human auditory nerve: New sights into the origin of brain-stem evoked potentials (BSEPs). Electroenceph Clin Neurophysiol 52:18–27.

    PubMed  Google Scholar 

  • Møller AR, Jannetta PJ, Sekhar LN (1988) Contributions from the auditory nerve to the brainstem auditory evoked potentials (BAEPS): Results of intracranial recording in man. Electroenceph Clin Neurophysiol 71:198–211.

    PubMed  Google Scholar 

  • Molnár M, Karmos G, Csépe V, Winkler I (1988) Intracortical auditory evoked potentials during classical aversive conditioning in cats. Biol Psych 26:339–350.

    Google Scholar 

  • Moore JK (1987a) The human auditory brain stem: A comparative view. Hear Res 29:1–32.

    PubMed  CAS  Google Scholar 

  • Moore JK (1987b) The human auditory brain stem as a generator of auditory evoked potentials. Hear Res 29:33–44.

    PubMed  CAS  Google Scholar 

  • Morest DK, Kiang NYS, Kane EC, Guinan JJ, Godfrey DA (1973) Stimulus coding of caudal levels of the cat’s auditory nervous system. II. Patterns of synaptic organization. In: Møller AR (ed) Basic Mechanisms in Hearing. New York: Academic Press.

    Google Scholar 

  • Mountain DC (1980) Changes in endolymphatic potentials and crossed olivo-cochlear bundle stimulation alter cochlear mechanics. Science 210:71–72.

    PubMed  CAS  Google Scholar 

  • Moushegian G, Rupert AL, Stillman RD (1973) Scalp-recorded early responses in man to frequencies in the speech range. Electroenceph Clin Neurophysiol 35:665–667.

    PubMed  CAS  Google Scholar 

  • Moushegian G, Rupert AL, Stillman RD (1978) Evaluation of frequency-following potentials in man: masking and clinical studies. Electroenceph Clin Neurophysiol 45:711–718.

    PubMed  CAS  Google Scholar 

  • Musiek FE, Geurkink NA (1981) Auditory brainstem and middle latency evoked response sensitivity near threshold. Ann Otol 90:236–240.

    CAS  Google Scholar 

  • Musiek F, Baran J, Pinheiro M (1989) P-300 Results in patients with lesions of the auditory areas of the cerebrum. Presented at 1989 American Auditory Society Meeting.

    Google Scholar 

  • Näätänen R (1975) Selective attention and evoked potentials in humans—a critical review. Biol Psychol 2:237–307.

    PubMed  Google Scholar 

  • Näätänen R (1984) In search of a short-duration memory trace of a stimulus in human brain. In: Pulkkinen L, Lyytinen P (eds) Essays in Honour of Martti Takala, Jyväskylä Studies in Education, Psychology and Social Science. Jyväskylä: University of Jyväskylä.

    Google Scholar 

  • Näätänen R, Michie PT (1979) Early selective attention effects of the evoked potential. A critical review and reinterpretation. Biol Psychol 8:81–136.

    PubMed  Google Scholar 

  • Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound. Psychophysiol 24:375–425.

    Google Scholar 

  • Näätänen R, Gaillard AWK, Mäntysalo S (1978) Early selective attention effect on evoked potential reinterpreted. Acta Psychologica 42:313–329.

    PubMed  Google Scholar 

  • Näätänen R, Gaillard AWK, Mäntysalo R (1980) Brain potential correlates of voluntary and involuntary attention. In: Kornhuber HH, Deecke L (eds) Motivation, Motor and Sensory Processes of the Brain: Electrical Potentials. Behaviour and Clinical Use, Progress in Brain Research 54. Amsterdam: Elsevier.

    Google Scholar 

  • Näätänen R, Simpson M, Loveless NE (1982) Stimulus deviance and evoked potentials. Biol Psychol 14:53–98.

    PubMed  Google Scholar 

  • Neville HJ, Kutas M, Schmidt A (1982a) Event-related potential studies of cerebral specialization during reading. I. Studies of normal adults. Brain Lang 16:300–315.

    PubMed  CAS  Google Scholar 

  • Neville HJ, Kutas M, Schmidt A (1982b) Event-related potential studies of cerebral specialization during reading. II. Studies of congenitally deaf adults. Brain Lang 16:316–337.

    PubMed  CAS  Google Scholar 

  • Neville HJ, Kutas M, Chesney G, Schmidt AL (1986) Event-related brain potentials during initial encoding and recognition memory of congruous and incongruous words, J Mem Lang 25:75–92.

    Google Scholar 

  • Neville HJ, Holcomb PJ, Coffey SA, Tallal P. (1988) Semantic and grammatical processing in normal and language-impaired children: An ERP study. Int Neuropschol Soc Abstr 1.

    Google Scholar 

  • Noldy-Cullum N, Stelmack R (1987) Recognition memory for pictures and words: the effect of incidental and intentional learning on N400. In: Johnson Jr. R, Rohrbaugh JW, Parasuraman R (eds) Current Trends in Event-Related Potentials Research, EEG Suppl 40:350–354.

    Google Scholar 

  • Norton SJ, Widen JE (1990) Evoked otoacoustic emissions in normal-hearing infants and children: Emerging data and issues. Ear Hear 11:121–127.

    PubMed  CAS  Google Scholar 

  • Novick B, Lovrich D, Vaughan Jr HG (1985) Event-related potentials associated with the discrimination of acoustic and semantic aspects of speech. Neuropsychol 23:87–101.

    CAS  Google Scholar 

  • O’Connor TA, Starr A (1985) Intracranial potentials correlated with an event-related potential, P300, in the cat. Brain Res 339:27–38.

    PubMed  Google Scholar 

  • Okada YC, Kaufman L, Williamson SJ (1983) The hippocampal formation as a source of the slow endogenous potentials. Electroenceph Clin Neurophysiol 55:417–426.

    PubMed  CAS  Google Scholar 

  • Okita T (1979) Event-related potentials and selective attention to auditory stimuli varying in pitch localization. Biol Psychol 9:271–284.

    PubMed  CAS  Google Scholar 

  • Okita T (1981) Slow negative shifts of the human event-related potential associated with selective information processing. Biol Psychol 12:63–75.

    PubMed  CAS  Google Scholar 

  • Osterhammel PA, Shallop JK, Terkildsen K (1985) The effect of sleep on the auditory brainstem response (ABR) and the middle latency response (MLR). Scand Audiol 14:47–50.

    PubMed  CAS  Google Scholar 

  • Özdamar Ö (1980) Fast and slow components of the human auditory brainstem response. Soc Neurosci Abstr p. 595.

    Google Scholar 

  • Özdamar Ö, Kraus N (1983a) Auditory brainstem response in infants recovering from bacterial meningitis: Neurologic assessment. Arch Neurol 40:499–502.

    PubMed  Google Scholar 

  • Özdamar Ö, Kraus N (1983b) Auditory middle latency responses in humans. Audiology 22:34–49.

    PubMed  Google Scholar 

  • Özdamar Ö, Kraus N, Curry F (1983) Auditory brainstem and middle latency responses in a patient with cortical deafness. Electroenceph Clin Neurophysiol 53:275–287.

    Google Scholar 

  • Palaskas CW, Wilson MJ, Dobie RA (1989) Electrophysiologic assessment of low-frequency hearing: Sedation effects. Otolaryngol Head Neck Surg 101:434–441.

    PubMed  CAS  Google Scholar 

  • Parker DJ, Thorton ARD (1978) Frequency specific components of the cochlear nerve and brainstem evoked responses of the human auditory system. Scand Audiol 7:53–60.

    PubMed  CAS  Google Scholar 

  • Parving A, Solomon G, Elbering C, Larsen B, Lassen NA (1980) Middle components of the auditory evoked response in bilateral temporal lobe lesions. Scand Audiol 9:161–167.

    PubMed  CAS  Google Scholar 

  • Peronnet F, Michel F (1977) The asymmetry of the auditory evoked potentials in normal man and in patients with brain lesions. In: Desmedt JE (ed) Auditory Evoked Potentials in Man. Psychopharmacology Correlates of EPs. Prog Clin Neurophysiol, Vol. 2. Basel: Karger, pp. 130–141.

    Google Scholar 

  • Perrault N, Picton TW (1984) Event-related potentials recorded from the scalp and nasopharynx. I. N1 and P2. Electroenceph Clin Neurophysiol 59:177–194.

    PubMed  CAS  Google Scholar 

  • Pfefferbaum A, Horvath T, Roth W, Kopell B (1979) Event related potential changes in chronic alcoholics. Electroenceph Clin Neurophysiol 47:637–647.

    PubMed  CAS  Google Scholar 

  • Pfefferbaum A, Ford J, Roth W, Kopell B (1980) Age-related changes in auditory event-related potentials. Electroenceph Clin Neurophysiol 49:266–276.

    PubMed  CAS  Google Scholar 

  • Picton TW (1986) Abnormal brainstem auditory evoked potentials: A tentative classification. In: Cracco RQ, Bodis-Wollner I (eds) Evoked Potentials. New York: Alan R. Liss Inc., pp. 373–378.

    Google Scholar 

  • Picton TW, Hillyard SA (1988) Endogenous event-related potentials. In: Picton TW (ed) Human Event-Related Potentials, EEG Handbook (Revised Series, Vol. 3) Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Picton TW, Hillyard SA, Krausz HI, Galambos R (1974) Human auditory evoked potentials I. Evaluation of components. Electroenceph Clin Neurophysiol 36:179–190.

    PubMed  CAS  Google Scholar 

  • Picton TW, Woods DL, Baribean-Braun J, Healy TMG (1977) Evoked potential audiometry. J Otolaryng 6:90–119.

    Google Scholar 

  • Picton TW, Stapells DR, Campbell KB (1981) Auditory evoked potentials from the human cochlea and brainstem. J Otolaryngol 10 Suppl 9.

    Google Scholar 

  • Picton TW, Suranyi L, Smith AD, Picton NA (1981) General principles. Sensus 1:45–47.

    Google Scholar 

  • Picton TW, Gerri AM, Champagne SC, Stuss DT, Nelson RF (1986) The effects of age and task difficulty on the late positive component of the auditory evoked potential. In: McCallum WC, Zappoli R, Denoth F (eds) Event Related Potentials of the Brain. Electroenceph Clin Neurophysiol Suppl 38. Amsterdam: Elsevier, pp. 132–133.

    Google Scholar 

  • Polich J (1985) Semantic categorization and event-related potentials. Brain Lang 26:304–321.

    PubMed  CAS  Google Scholar 

  • Polich J (1989) Frequency, intensity and duration as determinants of P300 from auditory stimuli. J Clin Neurophysiol 6:277–286.

    PubMed  CAS  Google Scholar 

  • Polich J, Starr A (1983) Middle, late and long latency auditory evoked potentials. In: Moore E (ed) Bases of Auditory Brainstem Evoked Responses. New York: Grune & Stratton, pp. 345–361.

    Google Scholar 

  • Polich J, Starr A (1984) Evoked potentials in aging. In: Alpert JL (ed) Clinical Neurology of Aging. New York: Oxford University Press, pp. 49–177.

    Google Scholar 

  • Pool K, Finitzo T, Chi-Tzong-Hong, Rogers J, Pickett RB (1989) Infarction of the superior temporal gyrus: A description of auditory evoked potential latency and amplitude topology. Ear Hear 10:144–152.

    PubMed  CAS  Google Scholar 

  • Portmann M, Lebert G, Aran JM (1967) Potentiels cochléaires obtenues chez l’homme en dehors de toute intervention chirurgicale. Note préliminaire. Rev Laryngol Otol Rhinol 88:157–164.

    CAS  Google Scholar 

  • Pritchard WS (1981) Psychophysiology of P300. Psychol Bull 89:506–540.

    PubMed  CAS  Google Scholar 

  • Probst R, Coats AC, Martin GK, Lonsbury-Martin BL (1986) Spontaneous, click- and toneburst-evoked otoacoustic emissions from normal ears. Hear Res 21:261–271.

    PubMed  CAS  Google Scholar 

  • Rapin I, Schimmel H, Tourk L, Krasnegor NA, Pollack C (1966) Evoked responses to clicks and tones of varying intensity in waking adults. Electroenceph Clin Neurophysiol 21:335–344.

    PubMed  CAS  Google Scholar 

  • Renault B, Rogot R, Lesevre N, Remond A (1982) Onset and offset of brain events as indices of mental chronometry. Science 215:1423–1425.

    Google Scholar 

  • Richer F, Johnson RA, Beatty J (1983) Sources of late components of the brain magnetic response. Soc Neurosci Abstr 9:656.

    Google Scholar 

  • Ritter W, Simson R, Vaughan Jr HG, Friedman DA (1979) A brain event related to the making of a sensory discrimination. Science 203:1358–1361.

    PubMed  CAS  Google Scholar 

  • Ritter W, Simson R, Vaughan HG, Macht M (1982) Manipulation of event-related potential manifestations of information processing stages. Science 218:909–911.

    PubMed  CAS  Google Scholar 

  • Robinson K, Rudge P (1977) Abnormalities of the auditory evoked potentials in patients with multiple sclerosis. Brain 100:19–40.

    PubMed  Google Scholar 

  • Rosati G, Bastiani PD, Paolino E, Prosser A, Arslan E, Artioli M. (1982) Clinical and audiological findings in a case of auditory agnosia. J Neurol 227:21–27.

    PubMed  CAS  Google Scholar 

  • Rosenhamer HJ (1977) Observations of electric brainstem responses in retro-cochlear hearing loss. Scand Audiol 6:179–196.

    PubMed  CAS  Google Scholar 

  • Rösler F, Sutton S, Johnson Jr. R, Mulder G, Fabiani M, Plooij-Van Gorsel E, Roth W (1986) In: McCallum WC, Zappoli R, Denoth F (eds) Cerebral Psychophysiology: Studies in Event-Related Potentials. EEG Suppl 38. Amsterdam: Elsevier, pp. 51–92.

    Google Scholar 

  • Roth WT, Horvath TB, Pfefferbaum A, Kopell BS (1980) Event-related potentials. Electroenceph Clin Neurophysiol 48:127–139.

    PubMed  CAS  Google Scholar 

  • Roth WT, Dorato KH, Kopell BS (1984) Intensity and task effects of evoked physiological responses to noise bursts. Psychophysiology 466–481.

    Google Scholar 

  • Rowe JM (1978) Normal variability of the brainstem auditory evoked response in young and old subjects. Electroenceph Clin Neurophysiol 44:459–470.

    PubMed  Google Scholar 

  • Ruben RJ, Elberling C, Saloman G (1976) Electrocochleography. Baltimore: University Park Press, 506 pp.

    Google Scholar 

  • Rudell AP (1987) A fiber tract model of auditory brain-stem responses. Electroenceph Clin Neurophysiol 67:53–62.

    PubMed  CAS  Google Scholar 

  • Rugg MD (1984a) Event-related potentials and the phonological processing of words and non-words. Neuropsychologia 22:435–443.

    PubMed  CAS  Google Scholar 

  • Rugg MD (1984b) Event-related potentials in phonological matching tasks. Brain Lang 23:225–240.

    PubMed  CAS  Google Scholar 

  • Ruhm H, Walker E, Flanigan H (1967) Acoustically-evoked potentials in man: Mediation of early components. Laryngoscope 77:806–822.

    PubMed  CAS  Google Scholar 

  • Rutten WLC (1980) Latencies of stimulated acoustic emissions in normal human ears. In: van den Brink G, Bilson FA (eds) Psychophysical, Physiological, and Behavioral Studies in Hearing. Delft University: Delft, pp. 68–76.

    Google Scholar 

  • Sams M, Aulenko R, Altonen O, Näätänen R (1990) Event-related potentials to infrequent changes in synthesized phonetic stimuli. J Cognitive Neurosci 2:344–355.

    Google Scholar 

  • Satterfield JH, Schell AM, Backs R (1987) Longitudinal study of AERPs in hyperactive and normal children: relationship to antisocial behavior. Electroenceph Clin Neurophysiol 67:531–536.

    PubMed  CAS  Google Scholar 

  • Satya-Murti S, Wolpaw JR, Cacace AT, Schaffer CA (1983) Late auditory evoked potentials can occur without brain stem potentials. Electroenceph Clin Neurophysiol 56:304–308.

    PubMed  CAS  Google Scholar 

  • Scherg M (1990) Fundamentals of dipole source potential analysis. In: Hoke M, Grandori F, Romani GL (eds) (in press) Vol. 6. Auditory Evoked Magnetic Fields and Potentials. Adv Audiol.

    Google Scholar 

  • Scherg M, Volk SA (1983) Frequency specificity of simultaneously recorded early and middle latency auditory evoked potentials. Electroenceph Clin Neurophysiol 56:443–452.

    PubMed  CAS  Google Scholar 

  • Scherg M, Von Cramon D (1985) Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroenceph Clin Neurophysiol 62:32–44.

    PubMed  CAS  Google Scholar 

  • Scherg M, Von Cramon D (1986) Evoked dipole source potentials of the human auditory cortex. Electroenceph Clin Neurophysiol 65:344–360.

    PubMed  CAS  Google Scholar 

  • Scherg M, Vajsar J, Picton T (1989) A source analysis of the late human auditory evoked potentials. J Cogn Neurosci 1:336–355.

    Google Scholar 

  • Scherg M, Hari R, Hänäläinen M (1990) Frequency-specific sources of the auditory N19-P30-P50 response detected by a multiple source analysis of evoked magnetic fields and potentials. In: Williamson S (ed) Advances in Biomagnetism. New York: Plenum Press (in press).

    Google Scholar 

  • Selinger M, Prescott T (1989) Auditory event-related potentials probes and behavioral measures of aphasia. Brain Lang 36:377–390.

    PubMed  CAS  Google Scholar 

  • Selters WA, Brackmann DE (1977) Acoustic tumor detection with brainstem electric response audiometry. Arch Otolaryngol 103:181–187.

    PubMed  CAS  Google Scholar 

  • Sharma A, Kraus N, McGee T, Carrell T, Nicol T (1991) Acoustic vs phonetic processing of speech stimulies reflected by the mismatch negatively ERP. Int Elec Resp Audio St Grp Abstr

    Google Scholar 

  • Siegel JH, Kim DO (1982) Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hear Res 6:171–182.

    PubMed  CAS  Google Scholar 

  • Simson R, Vaughan Jr HG, Ritter W (1977a) The scalp topography of potentials in auditory and visual go/no go tasks. Electroenceph Clin Neurophysiol 43:864–875.

    PubMed  CAS  Google Scholar 

  • Simson R, Vaughan Jr HG, Ritter W (1977b) The scalp topography of potentials in auditory and visual discrimination tasks. Electroenceph Clin Neurophysiol 42:528–535.

    PubMed  CAS  Google Scholar 

  • Skinner JE, Lindsley DB (1971) Enhancement of visual and auditory evoked potentials during blockade of the nonspecific thalamocortical system. Electroenceph Clin Neurophysiol 31:1–6.

    PubMed  CAS  Google Scholar 

  • Skinner P, Glattke TJ (1977) Electrophysiologic responses and audiometry: State of the art. J Speech Hear Dis 42:179–198.

    CAS  Google Scholar 

  • Smith DI, Kraus N (1987) Postnatal development of the auditory brainstem response (ABR) in the unanesthetized gerbil. Hear Res 27:157–164.

    PubMed  CAS  Google Scholar 

  • Sohmer H, Feinmesser M, Szabo G (1974) Sources of electrocochleographic responses as studied in patients with brain damage. Electroenceph Clin Neurophysiol 37:663–669.

    PubMed  CAS  Google Scholar 

  • Sohmer H, Pratt H, Kinarti R (1977) Sources of frequency following responses (FFR) in man. Electroenceph Clin Neurophysiol 42: 656–664.

    PubMed  CAS  Google Scholar 

  • Spire JP, Dohrmann GJ, Prieto PS (1982) Correlation of brainstem evoked response with direct acoustic nerve potential. In: Courjon J, Manguiere F, Reval M (eds) Advances in Neurology: Clinical Applications of Evoked Potentials in Neurology, Vol. 32. New York: Raven Press, pp. 159–167.

    Google Scholar 

  • Squires NK, Squires KC, Hillyard SA (1975) Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroenceph Clin Neurophysiol 38:387–401.

    PubMed  CAS  Google Scholar 

  • Squires KC, Wickens C, Squires NK, Donchin E (1976) The effect of stimulus sequence on the waveform of the cortical event-related potential. Science 193:1142–1146.

    PubMed  CAS  Google Scholar 

  • Squires KC, Donchin E, Herning RI, McCarthy G (1977) On the influence of task relevance and stimulus probability on event-related potential components. Electroenceph Clin Neurophysiol 41:2–14.

    Google Scholar 

  • Squires NK, Donchin E, Squires KC, Grossberg S (1977) Bisensory stimulation: inferring decision-related processes from the P300 component. J Exp Psychol: Hum Percept Perform 2:299–315.

    Google Scholar 

  • Squires NK, Galbraith GC, Aine CJ (1979) Event-related potential assessment of sensory and cognitive deficits in the mentally retarded. In: Lehmann D, Callaway E (eds) Human Evoked Potentials: Applications and Problems. New York: Plenum Press, pp. 397–413.

    Google Scholar 

  • Squires NK, Halgren E, Wilson C, Crandall P (1983) Human endogenous limbic potentials: cross-modality and depth/surface comparisons in epileptic subjects. In: Gaillard AWK, Ritter W (eds) Tutorials in ERP Research: Endogenous Components. Amsterdam: North-Holland, pp. 217–232.

    Google Scholar 

  • Stapells D, Ruben R (1989) Auditory brain stem responses to bone-conducted tones in infants. Ann Otol Rhinol Laryngol 12:941–949.

    Google Scholar 

  • Stapells DR, Linden D, Suffield JB, Hamel G, Picton TW (1985) Human auditory steady state potentials. Ear Hear 5:105–113.

    Google Scholar 

  • Stapells D, Galambos R, Costello J, Makeig S (1988) Inconsistency of auditory middle latency and steady-state responses in infants. Electroenceph Clin Neurophysiol 71:289–295.

    PubMed  CAS  Google Scholar 

  • Starr A, Achor LJ (1975) Auditory brainstem responses in neurological disease. Arch Neurol 32:761–768.

    PubMed  CAS  Google Scholar 

  • Starr A, Achor LJ (1979) Anatomical and physiological origins of auditory brain-stem responses (ABR). In: Lehmann D, Calloway E, (eds) Human Evoked Potentials, Applications and Problems. New York: Plenum Press, pp. 415–429.

    Google Scholar 

  • Starr A, Amlie R (1981) The evaluation of newborn brainstem and cochlear functions by auditory brainstem potentials. In: Korobkin R, Guilleminault C (eds) Progress in Perinatal Neurology, Vol. 1. Baltimore: Williams and Wilkins, pp. 65–84.

    Google Scholar 

  • Starr A, Don M (1988) Brain potentials evoked by acoustic stimuli. In: Picton TW (ed) Human Event-Related Potentials, EEG Handbook, Vol. 3. Amsterdam: Elsevier, pp. 97–157.

    Google Scholar 

  • Starr A, Hamilton A (1976) Correlation between confirmed sites of neurological lesions and abnormalities of far-field auditory brainstem responses. Electroenceph Clin Neurophysiol 41:595–608.

    PubMed  CAS  Google Scholar 

  • Starr A, Amlie RN, Martin WH, Sanders S (1977) Development of auditory function in newborn infants revealed by auditory brainstem potentials. Pediatrics 60:831–839.

    PubMed  CAS  Google Scholar 

  • Stein L, Kraus N (1985) Auditory evoked potentials and the multiply handicapped patient. In: Jacobson J (ed) The ABR. San Diego: College Hill Press, pp. 337–349.

    Google Scholar 

  • Steinschneider M, Arezzo JC, Vaughan Jr HG (1982) Intracortical analysis of the auditory evoked potential in the monkey. Neurosci Abstr 8:974.

    Google Scholar 

  • Stelmack RM, Saxe BJ, Noldy-Cullum N, Campbell KB, Armitage R (1988) Recognition memory for words and event-related potentials: A comparison of normal and disabled readers. J Clin Exp Neuropsychol 10:185–200.

    PubMed  CAS  Google Scholar 

  • Steriade M, Oakson G, Ropert N (1982) Firing rates and patterns of midbrain reticular neurons during steady and transitional states of the sleep-waking cycle. Exp Brain Res 46:37–51.

    PubMed  CAS  Google Scholar 

  • Stevens JC (1988) Click-evoked otoacoustic emissions in normal and hearing-impaired adults. Br J Audiol 22:45–49.

    PubMed  CAS  Google Scholar 

  • Stevens JC, Webb HD, Smith MF, Buffin JT, Ruddy H (1987) A comparison of otoacoustic emissions and brainstem electric response audiometry in the normal newborn and babies admitted to a special care baby unit. Clin Phys Physiol Meas 8:95–104.

    PubMed  CAS  Google Scholar 

  • Stockard JE, Stockard JJ (1981) Brainstem auditory evoked potentials in normal and otoneurologically impaired newborns and infants. In: Henry LE (ed) Current Clinical Neurophysiology EEG and Evoked Potentials. Amsterdam: Elsevier/North Holland, pp. 421–466.

    Google Scholar 

  • Stockard J, Rossiter V (1977) Clinical and pathological correlates of brain stem auditory response abnormalities. Neurology 27:316–325.

    PubMed  CAS  Google Scholar 

  • Stockard JJ, Stockard JE, Sharbrough FW (1977) Detection and localization of occult lesions with brainstem auditory responses. Mayo Clin Proc 52:761–769.

    PubMed  CAS  Google Scholar 

  • Stockard JJ, Sharbrough FW, Tinker JA (1978) Effects of hypothermia on the human brainstem auditory response. Ann Neurol 3:368–370.

    PubMed  CAS  Google Scholar 

  • Stockard JJ, Stockard JE, Sharbrough FW (1978) Nonpathologic factors influencing brainstem auditory evoked potentials. Amer J Electroenceph Tech 18:177–209.

    Google Scholar 

  • Stockard JJ, Stockard JE, Sharbrough FW (1986) Brainstem auditory evoked potentials in neurology: Methodology, interpretation, clinical application. In: Aminoff MJ (ed) Electrodiagnosis in Clinical Neurology. New York: Churchill-Livingstone, pp. 467–503.

    Google Scholar 

  • Stuss DT, Picton TW (1978) Neurophysiological correlates of human concept formation. Behav Biol 23:135–162.

    PubMed  CAS  Google Scholar 

  • Stuss DT, Sarazin FF, Leech EE, Picton TW (1983) Event-related potentials during naming and mental rotation. Electroenceph Clin Neurophysiol 56:133–146.

    PubMed  CAS  Google Scholar 

  • Stuss DT, Leech EE, Sarazin FF, Picton TW (1984) Event-related potentials during naming. Annals NY Acad Sci 425:278–282.

    CAS  Google Scholar 

  • Stuss DT, Picton TW, Cerri AM (1988) Electrophysiological manifestations of typicality judgment. Brain Lang 33:260–272.

    PubMed  CAS  Google Scholar 

  • Sutton S, Braren M, Zubin J, John ER (1965) Evoked-potential correlates of stimulus uncertainty. Science 150:1187–1188.

    PubMed  CAS  Google Scholar 

  • Sutton S, Tueting P, Zubin J, John ER (1967) Information delivery and the sensory evoked potentials. Science 155:1436–1439.

    PubMed  CAS  Google Scholar 

  • Suzuki T, Horiuchi K (1977) Effect of high pass filter on auditory brainstem response to tone pips. Scand Audiol 6:123–126.

    PubMed  CAS  Google Scholar 

  • Suzuki T, Kobayashi K (1984) An evaluation of 40-Hz event-related potentials in young children. Audiology 23:599–604.

    PubMed  CAS  Google Scholar 

  • Suzuki T, Taguchi K (1965) Cerebral evoked response to auditory stimuli in waking man. Ann Otol Rhinol Lar 74:128–139.

    CAS  Google Scholar 

  • Suzuki T, Hirai Y, Horiuchi K (1977) Auditory brains stem responses to tone pips. Scand Audiol 6:51–56.

    PubMed  CAS  Google Scholar 

  • Suzuki T, Hirabayashi M, Kobayashi K (1983) Auditory middle latency responses in young children. Br J Audiol 17:1–4.

    PubMed  CAS  Google Scholar 

  • Suzuki T, Hirabayashi M, Kobayashi K (1984) Effects of analog and digital filtering on auditory middle latency responses in adults and young children. Ann Otol 93:267–270.

    CAS  Google Scholar 

  • Syndulko K, Hansch MA, Cohen SN, Pearce JW, Goldberg Z, Montan B, Tourtellotte WW, Potvin AR (1982) Long-latency event-related potentials in normal aging and dementia. In: Courjon J, Mauguière F, Revol M (eds) Clinical Applications of Evoked Potentials in Neurology. New York: Raven Press, pp. 279–285.

    Google Scholar 

  • Teas, DC, Eldredge DH, Davis H (1962) Cochlear responses to acoustic transients: an interpretation of whole-nerve action potentials. J Acoustic Soc Am 34:1438–1459.

    Google Scholar 

  • Vaughan Jr. HG, Ritter W (1970) The sources of auditory evoked responses recorded from the human scalp. Electroenceph Clin Neurophysiol 28:360–367.

    PubMed  Google Scholar 

  • Wada S-I, Starr A (1983a) Generation of auditory brainstem responses (ABRs). I. Effects of injection of a local anesthetic (procaine MCI) into the trapezoid body of guinea pigs and cat. Electroenceph Clin Neurophysiol 56:326–339.

    PubMed  CAS  Google Scholar 

  • Wada S-I, Starr A (1983b) Generation of auditory brain stem responses (ABRs). II. Effect of injection of a local anesthetic (procaine HCI) into the trapezoid body of guinea pigs and cat. Electroenceph. Clin. Neurophysiol 56:340–351.

    CAS  Google Scholar 

  • Wada S-I, Starr A (1983c) Generation of auditory brain stem responses (ABRs). III. Effects of lesions of the superior olive, lateral lemniscus and inferior colliculus on the ABR in guinea pig. Electroenceph Clin Neurophysiol 56:352–366.

    PubMed  CAS  Google Scholar 

  • Watson R, Valenstein E, Heilman, K (1981) Thalamic neglect possible role of the medial thalamus and nucleus reticularis in behavior. Arch Neurology 38:501–506.

    CAS  Google Scholar 

  • Wilder MB, Farley GR, Starr A (1981) Endogenous late positive component of the evoked potential in cats corresponding to P300 in humans. Science 211:605–607.

    PubMed  CAS  Google Scholar 

  • Wilson MJ, Dobie RA (1987) Human short-latency responses obtained by cross-correlation. Electroenceph Clin Neurophysiol 66:529–538.

    PubMed  CAS  Google Scholar 

  • Wolpaw JR, Penry JK (1975) A temporal component of the auditory evoked response. Electroenceph Clin Neurophysiol 39:609–620.

    PubMed  CAS  Google Scholar 

  • Wood CC, Wolpaw JR (1982) Scalp distribution of human auditory evoked potentials. II. Evidence for overlapping sources and involvement of auditory cortex. Electroenceph Clin Neurophysiol 54:25–38.

    PubMed  CAS  Google Scholar 

  • Wood CC, McCarthy G (1986) A possible frontal lobe contribution to scalp P300. In: Rohrbaugh JW, Johnson Jr R, Parasuraman R (eds) Research Reports: 8th International Conference on Event-Related Potentials of the Brain, p. 164.

    Google Scholar 

  • Wood CC, Allison T, Goff WR, Williamson PD, Spencer DB (1980) On the neural origin of P300 in man. In: Kornhuber HH, Deecke L (eds) Motivation, Motor and Sensory Processes of the Brain. Progress in Brain Research, Vol. 54. Amsterdam: Elsevier, pp. 51–56.

    Google Scholar 

  • Woods DL, Clayworth CC, Knight RT, Simpson GV, Naeser MA (1987) Generators of middle- and long-latency auditory evoked potentials: Implications from studies of patients with bitemporal lesions. Electroenceph Clin Neurophysiol 68:132–148.

    PubMed  CAS  Google Scholar 

  • Woolf NJ, Eckenstein F, Butcher LL (1984) Cholinergic systems in the rat brain. I. Projections to the limbic telencephalon. Brain Res Bull 13:751–784.

    PubMed  CAS  Google Scholar 

  • Worden FG, Marsh JT (1968) Frequency following (microphonic-like) neural responses evoked by sound. Electroenceph Clin Neurophysiol 25:42–52.

    PubMed  CAS  Google Scholar 

  • Yamada O, Kodera K, Yagi T (1979) Cochlear processes affecting wave V latency of the auditory evoked brain stem response. A study of patients with sensory hearing loss. Scand Audiol 8:67–70.

    PubMed  CAS  Google Scholar 

  • Yingling CD, Hosobuchi Y (1984) A subcortical correlate of P300 in man. Electroenceph Clin Neurophysiol. 59:72–76.

    PubMed  CAS  Google Scholar 

  • Yingling CD, Skinner JE (1977) Gating of thalamic input to cerebral cortex by nucleus reticularis thalami. In: Desmedt JE (ed) Attention, Voluntary Contraction and Event-Related Cerebral Potentials. Prog Clin Neurophysiol Vol.1. Basel: Karger, pp. 70–96.

    Google Scholar 

  • Zerlin S, Naunton RF (1974) Early and late averaged electroencephalic responses at low sensation levels. Audiology 13:366–378.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kraus, N., McGee, T. (1992). Electrophysiology of the Human Auditory System. In: Popper, A.N., Fay, R.R. (eds) The Mammalian Auditory Pathway: Neurophysiology. Springer Handbook of Auditory Research, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2838-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2838-7_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97801-7

  • Online ISBN: 978-1-4612-2838-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics