Skip to main content

Physiology and Coding of Sound in the Auditory Nerve

  • Chapter
The Mammalian Auditory Pathway: Neurophysiology

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 2))

Abstract

While this review discusses many aspects of mammalian auditory nerve function, it is not exhaustive in either breadth or depth of coverage. In particular, the review deals only briefly with the effects of stimulation of the olivocochlear efferent system (Wiederhold 1986; Guinan 1988) and does not cover such important subjects as developmental changes, speech encoding, the mode of origin of the compound action potential and its application in human studies (see Chapter 6 by Kraus and McGee), and investigations of auditory nerve function using psychophysical stimulus paradigms. Such exclusions are necessitated by space considerations and, most importantly, by the reviewer’s lack of expertise in these areas. However, a number of recent reviews provide coverage in these excluded topics (Kiang 1984; Sachs 1984; Abbas 1986; Javel 1986; Pickles 1986, 1988; Harrison 1988a; Javel et al. 1988; Patuzzi and Robertson 1988; Sachs, Winslow, and Blackburn 1988; Smith 1988; Kitzes 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas PJ (1978) Effects of stimulus frequency on two-tone suppression: A comparison of physiological and psychophysical results. J Acoust Soc Am 63:1878–1886.

    PubMed  CAS  Google Scholar 

  • Abbas PJ (1986) Physiology of the auditory system. In: Cummings CW, Fredrickson JM, Harker LA, Krause CJ, Schuller DE (eds) Otolaryngology—Head and Neck Surgery. Vol. 4 (Ear and Skull Base). St. Louis: Mosby, pp. 2633–2677.

    Google Scholar 

  • Abbas PJ, Sachs MB (1976) Two-tone suppression in auditory-nerve fibers: Extension of a stimulus-response relationship. J Acoust Soc Am 59:112–122.

    PubMed  CAS  Google Scholar 

  • Allen JB (1983) Magnitude and phase-frequency response to single tones in the auditory nerve. J Acoust Soc Am 73:2071–2092.

    PubMed  CAS  Google Scholar 

  • Anderson DJ, Rose JE, Hind JE, Brugge JF (1971) Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: Frequency and intensity effects. J Acoust Soc Am 49:1131–1139.

    PubMed  Google Scholar 

  • Arthur RM (1976) Harmonic analysis of two-tone discharge patterns in cochlear nerve fibers. Biol Cybernet 22:21–31.

    CAS  Google Scholar 

  • Arthur RM, Pfeiffer RR, Suga N (1971) Properties of “two-tone inhibition” in primary auditory neurones. J Physiol 212:593–609.

    PubMed  CAS  Google Scholar 

  • von Békésy G (1951) Microphonics produced by touching the cochlear partition with a vibrating electrode. J Acoust Soc Am 23:29–35.

    Google Scholar 

  • von Békésy G (1960) Experiments in Hearing. New York: McGraw-Hill.

    Google Scholar 

  • Bode HW (1946) Network Analysis and Feedback Amplifier Design. New York: Van Nostrand.

    Google Scholar 

  • de Boer E (1967) Correlation studies applied to the frequency resolution of the cochlea. J Aud Res 7:209–217.

    Google Scholar 

  • de Boer E (1973) On the principle of specific coding in the inner ear. J Dyn Syst Meas Control 95:265–273.

    Google Scholar 

  • de Boer E, de Jongh HR (1978) On cochlear encoding: potentialities and limitations of the reverse-correlation technique. J Acoust Soc Am 63:115–135.

    PubMed  Google Scholar 

  • Bohne BA, Kenworthy A, Carr CD (1982) Density of myelinated nerve fibers in the chinchilla cochlea. J Acoust Soc Am 72:102–107.

    PubMed  CAS  Google Scholar 

  • Britt R, Starr A (1976) Synaptic events and discharge patterns of cochlear nucleus cells. II. Frequency-modulated tones. J Neurophysiol 39:179–194.

    PubMed  CAS  Google Scholar 

  • Brown MC, Nuttall AL (1984) Efferent control of cochlear inner hair cell responses in the guinea pig. J Physiol 354:625–646.

    PubMed  CAS  Google Scholar 

  • Buunen TJF, Rhode WS (1978) Responses of fibers in the cat’s auditory nerve to the cubic difference tone. J Acoust Soc Am 64:772–781.

    PubMed  CAS  Google Scholar 

  • Cheatham MA, Dallos P (1989) Two-tone suppression in inner hair cell responses. Hear Res 40:187–196.

    PubMed  CAS  Google Scholar 

  • Cheatham MA, Dallos P (1990) Comparison of low- and high-side two-tone suppression in inner hair cell and organ of Corti responses. Hear Res 50:193–210.

    PubMed  CAS  Google Scholar 

  • Chodynicki S, Kostrzeswska A (1974) Wplyw furosemidu i kwasu etakrynowego na potencjal endolimfatyczny swinki morskiej. Otolaryngol Pol 28:5–8.

    PubMed  CAS  Google Scholar 

  • Cody AR, Johnstone BM (1980) Single auditory neuron response during acute acoustic trauma. Hear Res 3:3–16.

    PubMed  CAS  Google Scholar 

  • Cody AR, Mountain DC (1989) Low-frequency responses of inner hair cells: evidence for a mechanical origin of peak splitting. Hear Res 41:89–100.

    PubMed  CAS  Google Scholar 

  • Costalupes JA, Rich NC, Ruggero MA (1987) Effects of excitatory and non-excitatory suppressor tones on two-tone rate suppression in auditory nerve fibers. Hear Res 26:155–164.

    PubMed  CAS  Google Scholar 

  • Costalupes JA, Young ED, Gibson DJ (1984) Effects of continuous noise backgrounds on rate response of auditory nerve fibers in cat. J Neurophysiol 51:1326–1344.

    PubMed  CAS  Google Scholar 

  • Dallos P (1986) Neurobiology of cochlear inner and outer hair cells: Intracellular recordings. Hear Res 22:185–198.

    PubMed  CAS  Google Scholar 

  • Dallos P (1988) Cochlear neurobiology: some key experiments and concepts of the past two decades. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: Wiley, pp. 153–188.

    Google Scholar 

  • Dallos P, Cheatham MA (1989) Nonlinearities in cochlear receptor potentials and their origins. J Acoust Soc Am 86:1790–1796.

    PubMed  CAS  Google Scholar 

  • Dallos P, Harris D (1978) Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol 41:365–382.

    PubMed  CAS  Google Scholar 

  • Dallos P, Harris DM, Relkin E, Cheatham MA (1980) Two-tone suppression and intermodulation distortion in the cochlea: effect of outer hair cell lesions. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological and Behavioral Studies in Hearing. Delft, The Netherlands: Delft Univ. Press, pp. 242–249.

    Google Scholar 

  • Davis H (1965) A model for transducer action in the cochlea. Cold Spring Harbor Symp Quant Biol 30:181–190.

    PubMed  CAS  Google Scholar 

  • Delgutte B (1990) Two-tone rate suppression in auditory nerve fibers: Dependence on suppression frequency and level. Hear Res 49:225–246.

    PubMed  CAS  Google Scholar 

  • Derbyshire AJ, Davis H (1935) The action potentials of the auditory nerve. Am J Physiol 113:476–504.

    Google Scholar 

  • Eldredge DH, Miller JD, Bohne BA (1981) A frequency-position map for the chinchilla cochlea. J Acoust Soc Am 69:1091–1095.

    PubMed  CAS  Google Scholar 

  • Engebretson AM, Eldredge DC (1968) Model for nonlinear characteristics of cochlear potentials. J Acoust Soc Am 44:548–554.

    PubMed  CAS  Google Scholar 

  • Evans EF (1972) The frequency response and other properties of single fibres in the guinea-pig cochlear nerve. J Physiol 226:263–287.

    PubMed  CAS  Google Scholar 

  • Evans EF (1974) The effects of hypoxia on the tuning of single cochlear nerve fibers. J Physiol 238:65P–66P

    PubMed  CAS  Google Scholar 

  • Evans EF (1977) Frequency selectivity at high signal levels of single units in cochlear nerve and nucleus. In: Evans EF, Wilson JP (eds) Psychophysics and Physiology of Hearing. London: Academic, pp. 185–192.

    Google Scholar 

  • Evans EF (1981) The dynamic range problem: Place and time coding at the level of cochlear nerve and nucleus. In: Syka J, Aitkin L (eds) Neuronal Mechanisms of Hearing. New York: Plenum, pp. 69–85.

    Google Scholar 

  • Evans EF, Klinke R (1982a) The effects of intracochlear cyanide and tetrodotoxin on the properties of single cochlear nerve fibres in the cat. J Physiol 331:385–408.

    PubMed  CAS  Google Scholar 

  • Evans EF, Klinke R (1982b) The effects of intracochlear and systemic furosemide on the properties of cochlear nerve fibres in the cat. J Physiol 331:409–428.

    PubMed  CAS  Google Scholar 

  • Evans EF, Wilson JP (1975) Cochlear tuning properties: Concurrent basilar membrane and single nerve fiber measurements. Science 190:1218–1221.

    PubMed  CAS  Google Scholar 

  • Fahey PF, Allen JB (1985) Nonlinear phenomena as observed in the cat ear canal and at the auditory nerve. J Acoust Soc Am 77:599–612.

    PubMed  CAS  Google Scholar 

  • Flock Å (1971) Sensory transduction in hair cells. In: Lowenstein WR (ed) Handbook of Sensory Physiology. Vol. I. Principles of Receptor Physiology. Berlin: Springer Verlag, pp. 396–441.

    Google Scholar 

  • Furukawa T, Matsuura S (1978) Adaptive rundown of excitatory post-synaptic potentials at synapses between hair cells and eighth nerve fibres in the goldfish. J Physiol 276:193–209.

    PubMed  CAS  Google Scholar 

  • Furukawa T, Matsuura S (1980) Adaptation and dynamic response occurring at hair cell-afferent fiber synapse. In: Syka J, Aitkin L (eds) Neuronal Mechanisms of Hearing. New York: Plenum, pp. 37–41.

    Google Scholar 

  • Galambos R, Davis H (1943) The response of single auditory-nerve fibers to acoustic stimulation. J Neurophysiol 6:39–57.

    Google Scholar 

  • Galambos R, Davis H (1944) Inhibition of activity in single auditory nerve fibers by acoustic stimulation. J Neurophysiol 7:287–303.

    Google Scholar 

  • Geisler CD (1985) Effects of a compressive nonlinearity in a cochlear model. J Acoust Soc Am 78:257–260.

    PubMed  CAS  Google Scholar 

  • Geisler CD, Rhode WS (1982) The phases of basilar-membrane vibrations. J Acoust Soc Am 71:1201–1203.

    PubMed  CAS  Google Scholar 

  • Geisler CD, Deng L, Greenberg SR (1985) Thresholds for primary auditory fibers using statistically defined criteria. J Acoust Soc Am 77:1102–1109.

    PubMed  CAS  Google Scholar 

  • Geisler CD, Sinex DG (1980) Responses of primary auditory fibers to combined noise and tonal stimuli. Hear Res 3:317–334.

    PubMed  CAS  Google Scholar 

  • Geisler CD, Sinex DG (1983) Comparison of click responses of primary auditory fibers with minimum-phase predictions. J Acoust Soc Am 73:1671–1675.

    PubMed  CAS  Google Scholar 

  • Geisler CD, Yates GK, Patuzzi RB, Johnstone BM (1990) Saturation of outer hair cell receptor currents causes two-tone suppression. Hear Res 44:241–256.

    PubMed  CAS  Google Scholar 

  • Geisler CD, Rhode WS, Kennedy DT (1974) Responses to tonal stimuli of single auditory nerve fibers and their relationship to basilar membrane motion in the squirrel monkey. J Neurophysiol 37:1156–1172.

    PubMed  CAS  Google Scholar 

  • Gifford ML, Guinan Jr JJ (1983) Effects of crossed-olivocochlear-bundle stimulation on cat auditory nerve fiber responses to tones. J Acoust Soc Am 74:115–123.

    PubMed  CAS  Google Scholar 

  • Gilbert AG, Pickles JO (1980) Responses of auditory nerve fibres in the guinea pig to noise bands of different widths. Hear Res 2:327–333.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613–636.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Fernández C (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J Neurophysiol 34:635–660.

    PubMed  CAS  Google Scholar 

  • Goldstein JL (1967) Auditory nonlinearity. J Acoust Soc Am 41:676–689.

    PubMed  CAS  Google Scholar 

  • Goldstein JL, Kiang NYS (1968) Neural correlates of the aural combination tone 2f1 - f2. Proc IEEE 56:981–992.

    Google Scholar 

  • Goldstein JL, Baer T, Kiang NYS (1971) A theoretical treatment of latency, group delay and tuning characteristics for auditory nerve responses to clicks and tones. In: Sachs MB (ed) The Physiology of the Auditory System. National Educational Consultants, pp. 133–141.

    Google Scholar 

  • Goldstein MH (1968) The auditory periphery. In: Mountcastle VB (ed) Medical Physiology. St. Louis: Mosby, pp. 1465–1498.

    Google Scholar 

  • Goodman DA, Smith RL, Chamberlain SC (1982) Intracellular and extracellular responses in the organ of Corti of the gerbil. Hear Res 7:161–179.

    PubMed  CAS  Google Scholar 

  • Gray PR (1967) Conditional probability analyses of the spike activity of single neurons. Biophys J 7:759–777.

    PubMed  CAS  Google Scholar 

  • Greenwood DD (1986) What is “synchrony suppression”? J Acoust Soc Am 79:1857–1872.

    PubMed  CAS  Google Scholar 

  • Greenwood DD (1988) Cochlear nonlinearity and gain control as determinants of the response of primary auditory neurons to harmonic complexes. Hear Res 32:207–253.

    PubMed  CAS  Google Scholar 

  • Guinan Jr JJ (1988) Physiology of the olivocochlear efferents. In: Syka J, Masterton RB (eds) Auditory Pathways—Structure and Function. New York: Plenum, pp. 253–267.

    Google Scholar 

  • Guinan J, Peake WT (1967) Middle ear characteristics of anesthetized cats. J Acoust Soc Am 41:1237–1261.

    PubMed  Google Scholar 

  • Gummer AW, Johnstone BM (1984) Group delay measurement from spiral ganglion cells in the basal turn of the guinea pig cochlea. J Acoust Soc Am 76:1388–1400.

    PubMed  CAS  Google Scholar 

  • Harris DM (1979) Action potential suppression, tuning curves and thresholds:Comparison with single fiber data. Hear Res 1:133–154.

    PubMed  CAS  Google Scholar 

  • Harrison RV (1981) Rate-versus-intensity functions and related AP responses in normal and pathological guinea pig and human cochleas. J Acoust Soc Am 70:1036–1044.

    PubMed  CAS  Google Scholar 

  • Harrison RV (1988a) The physiology of the cochlear nerve. In: Jahn AF, Santos-Sacchi J (eds) Physiology of the Ear. New York: Raven Press, pp. 359–384.

    Google Scholar 

  • Harrison RV (1988b) The Biology of Hearing and Deafness. Springfield, IL: Charles C Thomas.

    Google Scholar 

  • Harrison RV, Evans EF (1979) Cochlear fibre responses in guinea pigs with well defined cochlear lesions. In: Hoke M, de Boer E (eds) Models of the Auditory System and Related Signal Processing Techniques. Scand Audiol Suppl 9:83–92.

    Google Scholar 

  • Harrison RV, Evans EF (1982) Reverse correlation study of cochlear filtering in normal and pathological guinea pig ears. Hear Res 6:303–314.

    PubMed  CAS  Google Scholar 

  • Horst JW, Javel E, Farley GR (1985) Extraction and enhancement of spectral structure by the cochlea. J Acoust Soc Am 78:1898–1901.

    PubMed  CAS  Google Scholar 

  • Hubbard AE, Voigt HF, Mountain DC (1983) Injection of direct current into scala media alters auditory-nerve response properties. Assoc Res Otolaryngol Midwinter Meet Abst 6:103–104.

    Google Scholar 

  • Hudspeth AJ, Corey DP (1977) Sensitivity, polarity and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 76:2407–2411.

    Google Scholar 

  • Javel E (1980) Coding of AM tones in the chinchilla auditory nerve: Implications for the pitch of complex tones. J Acoust Soc Am 68:133–146.

    PubMed  CAS  Google Scholar 

  • Javel E (1986) Basic response properties of auditory nerve fibers. In: Altschuler RA, Hoffman DW, Bobbin RP (eds) Neurobiology of Hearing: The Cochlea. New York: Raven Press, pp. 213–245.

    Google Scholar 

  • Javel E, Geisler CD, Ravindran A (1978) Two-tone suppression in auditory nerve of the cat: Rate-intensity and temporal analyses. J Acoust Soc Am 63:1093–1104.

    PubMed  CAS  Google Scholar 

  • Javel E, McGee JA, Walsh EJ, Farley GR, Gorga MP (1983a) Suppression of auditory nerve responses. II. Suppression threshold and growth, isosuppression contours. J Acoust Soc Am 74:801–813.

    PubMed  CAS  Google Scholar 

  • Javel E, McGee JA, Walsh EJ, Farley GR (1983b) Studies of “synchrony suppression” in normal and hearing-impaired cats. In: Webster WR, Aitkin LM (eds) Mechanisms of Hearing. Clayton, Victoria, Australia: Monash Univ. Press, pp. 46–51.

    Google Scholar 

  • Javel E, McGee JA, Horst JW, Farley GR (1988) Temporal mechanisms in auditory stimulus coding. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: Wiley, pp. 515–558.

    Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68:1115–1122.

    PubMed  CAS  Google Scholar 

  • Joris PX, Yin TCT (1992) Responses to amplitude-modulated tones in the auditory nerve of the cat. J Acoust Soc Am 91:215–232.

    PubMed  CAS  Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emissions from within the auditory system. J Acoust Soc Am 64:1386–1391.

    PubMed  CAS  Google Scholar 

  • Khanna SM, Leonard DGB (1982) Basilar membrane tuning in the cat cochlea. Science 215:305–306.

    PubMed  CAS  Google Scholar 

  • Khanna SM, Teich MC (1989a) Spectral characteristics of the responses of primary auditory-nerve fibers to amplitude-modulated signals. Hear Res 39:143–158.

    PubMed  CAS  Google Scholar 

  • Khanna SM, Teich MC (1989b) Spectral characteristics of the responses of primary auditory-nerve fibers to frequency-modulated signals. Hear Res 39:159–176.

    PubMed  CAS  Google Scholar 

  • Kiang NYS (1984) Peripheral neural processing of auditory information. In: Darian-Smith I (ed) Handbook of Physiology. Section 1 (The Nervous System), Volume III (Sensory Processes, Part 2). Bethesda: American Physiol Soc, pp. 639–674.

    Google Scholar 

  • Kiang NYS, Moxon EC (1972) Physiological considerations in artificial stimulation of the inner ear. Ann Otol Rhinol Laryngol 81:714–730.

    PubMed  CAS  Google Scholar 

  • Kiang NYS, Moxon EC (1974) Tails of tuning curves of auditory-nerve fibers. J Acoust Soc Am 55:620–630.

    PubMed  CAS  Google Scholar 

  • Kiang NYS, Moxon EC, Levine RA (1970) Auditory-nerve activity in cats with normal and abnormal cochleas. In: Wolstenholme GEW, Knight J (eds) Sensorineural Hearing Loss. London: Churchill, pp. 241–268.

    Google Scholar 

  • Kiang NYS, Watanabe T, Thomas C, Clark LF (1965) Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kidd RC, Weiss TF (1990) Mechanisms that degrade timing information in the cochlea. Hear Res 49:181–208.

    PubMed  CAS  Google Scholar 

  • Kitzes LM (1990) Development of auditory system physiology. In: Coleman JR (ed) Development of Sensory Systems in Mammals. New York, Wiley, pp. 249–288.

    Google Scholar 

  • Konishi T, Nielsen DW (1973) Temporal relationship between motion of the basilar membrane and initiation of nerve impulses in the auditory nerve fibers. J Acoust Soc Am 53:325.

    Google Scholar 

  • Konishi T, Nielsen DW (1978) The temporal relationship between basilar membrane motion and nerve impulse initiation in auditory nerve fibers of guinea pigs. Jap J Physiol 28:291–307.

    CAS  Google Scholar 

  • Leake PA, Snyder RL (1989) Topographic organization of the central projections of the spiral ganglion in cats. J Comp Neurol 281:612–629.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1976) Abnormal discharge patterns of auditory nerve fibers in acoustically traumatized cats. Doctoral Dissertation, Department of Physiology, Harvard University.

    Google Scholar 

  • Liberman MC (1978) Auditory-nerve responses from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1982a) The cochlear frequency map for the cat: Labeling auditory nerve fibers of known characteristic frequency. J Acoust Soc Am 72:1441–1449.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1982b) Single-neuron labeling in the cat auditory nerve. Science 216:1239–1241.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1991) Spatial segregation of auditory-nerve projections in the cochlear nucleus according to spontaneous discharge rates. Assoc Res. Otolaryngol Midwinter Meet Abst 14:42.

    Google Scholar 

  • Liberman MC, Dodds LW (1984a) Single neuron labeling and chronic cochlear pathology. II. Stereocilia damage and alterations of spontaneous discharge rates. Hear Res 16:43–53.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Dodds LW (1984b) Single neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear Res 16:55–74.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Kiang NYS (1978) Acoustic trauma in cats. Cochlear pathology and auditory-nerve activity. Acta Otolaryngol Suppl 358.

    Google Scholar 

  • Liberman MC, Kiang NYS (1984) Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate- and phase-level functions. Hear Res 16:75–90.

    PubMed  CAS  Google Scholar 

  • Lim DJ (1980) Cochlear anatomy related to cochlear micromechanics. A review. J Acoust Soc Am 67:1686–1695.

    PubMed  CAS  Google Scholar 

  • Lütkenhöner B, Smith RL (1986) Rapid adaptation of auditory-nerve fibers: Fine structure at high stimulus intensities. Hear Res 24:289–294.

    PubMed  Google Scholar 

  • Mathog RH, Thomas WG, Hudson WR (1970) Ototoxicity of new and potent diuretics. Arch Otolaryngol 92:7–13.

    PubMed  CAS  Google Scholar 

  • Miller JD (1970) Audibility curve of the chinchilla. J Acoust Soc Am 48:513–523.

    PubMed  CAS  Google Scholar 

  • Møller AR (1976) Dynamic properties of primary auditory fibers compared with cells in the cochlear nucleus. Acta Physiol Scand 98:157–167.

    PubMed  Google Scholar 

  • Møller AR (1977) Frequency selectivity of single auditory-nerve fibers in response to broadband noise stimuli. J Acoust Soc Am 62:135–142.

    PubMed  Google Scholar 

  • Mountain DC, Hubbard AE, McMullen TA (1983) Electromechanical processes in the cochlea. In: de Boer E, Viergever MA (eds) Mechanics of Hearing. Delft, The Netherlands: Delft Univ. Press, pp. 119–126.

    Google Scholar 

  • Nuttall AL (1985) Influence of direct current on dc receptor potentials from cochlear inner hair cells in the guinea pig. J Acoust Soc Am 77:165–175.

    PubMed  CAS  Google Scholar 

  • Nuttall AL (1986) Physiology of hair cells. In: Altschuler RA, Bobbin RP, Hoffman DW (eds) Neurobiology of Hearing: the Cochlea. New York: Raven Press, pp. 47–75.

    Google Scholar 

  • Nuttall AL, Dolan DF (1990) Inner hair cell responses to the 2f1 - f2 intermodulation distortion product. J Acoust Soc Am 87:782–790.

    PubMed  CAS  Google Scholar 

  • Nuttall AL, Dolan DF, Avinash G (1990) Measurements of basilar membrane tuning and distortion with laser Doppler velocimetry. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele, CR (eds) Mechanics and Biophysics of Hearing. New York: Springer Verlag, pp. 288–295.

    Google Scholar 

  • Nuttall AL, Brown MC, Masta RI, Lawrence M (1981) Inner hair cell responses to the velocity of basilar membrane motion in the guinea pig. Brain Res 211:171–174.

    PubMed  CAS  Google Scholar 

  • Palmer AR (1982) Encoding of rapid amplitude fluctuations by cochlear nerve fibres in the guinea pig. Arch Otorhinolaryngol 236:197–202.

    PubMed  CAS  Google Scholar 

  • Palmer AR, Evans EF (1980) Cochlear fibre rate-intensity functions: No evidence for basilar membrane nonlinearities. Hear Res 2:319–326.

    PubMed  CAS  Google Scholar 

  • Palmer AR, Russell IJ (1986) Phase locking in the cochlear nerve of the guinea pig and its relation to the receptor potential of inner hair cells. Hear Res 24:1–15.

    PubMed  CAS  Google Scholar 

  • Patuzzi R, Robertson D (1988) Tuning in the mammalian cochlea. Physiol Rev 68:1009–1082.

    PubMed  CAS  Google Scholar 

  • Patuzzi R, Sellick PM (1983a) The alteration of the low frequency response of primary auditory afferents by cochlear trauma. Hear Res 11:125–132.

    PubMed  CAS  Google Scholar 

  • Patuzzi R, Sellick PM (1983b) A comparison between basilar membrane and inner hair cell receptor potential input-output functions in the guinea pig cochlea. J Acoust Soc Am 74:1734–1741.

    PubMed  CAS  Google Scholar 

  • Patuzzi R, Sellick PM (1984) The modulation of sensitivity of the mammalian cochlea by low frequency tones. II. Inner hair cell receptor potentials. Hear Res 13:9–18.

    Google Scholar 

  • Patuzzi R, Sellick PM, Johnstone BM (1984) The modulation of the sensitivity of the mammalian cochlea by low frequency tones. III. Basilar membrane motion. Hear Res 13:19–27.

    PubMed  CAS  Google Scholar 

  • Patuzzi RB, Yates GK, Johnstone BM (1989) Outer hair cell receptor current and sensorineural hearing loss. Hear Res 42:47–72.

    PubMed  CAS  Google Scholar 

  • Pfeiffer RR (1970) A model for two-tone inhibition of single cochlear nerve fibers. J Acoust Soc Am 48:1373–1378.

    PubMed  Google Scholar 

  • Pfeiffer RR, Kim DO (1972) Response patterns of single cochlear nerve fibers to click stimuli: Descriptions for cat. J Acoust Soc Am 52:1669–1677.

    PubMed  CAS  Google Scholar 

  • Pickles JO (1986) The neurophysiological basis of frequency selectivity. In: Moore BCJ (ed) Frequency Selectivity in Hearing. London: Academic Press, pp. 51–121.

    Google Scholar 

  • Pickles JO (1988) An Introduction to the Physiology of Hearing. 2nd edition. London: Academic Press.

    Google Scholar 

  • Relkin EM, Doucet JR (1991) Low spontaneous-rate auditory neurons compared to high spontaneous-rate neurons: I. Differences in recovery from prior stimulation. Assoc Res Otolaryngol Midwinter Meet Abst 14:127.

    Google Scholar 

  • Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J Acoust Soc Am 49:1218–1231.

    PubMed  Google Scholar 

  • Rhode WS (1977) Some observations on two-tone interaction measured with the Mössbauer effect. In: Evans EF, Wilson JP (eds) Psychophysics and Physiology of Hearing. London: Academic Press, pp. 27–38.

    Google Scholar 

  • Rhode WS, Smith PH (1985) Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers. Hear Res 18:159–168.

    PubMed  CAS  Google Scholar 

  • Robertson D (1974) Cochlear neurons: frequency selectivity altered by perilymph removal. Science 186:153–155.

    PubMed  CAS  Google Scholar 

  • Robertson D (1976) Correspondence between sharp tuning and two-tone inhibition in primary auditory neurones. Nature 259:477–478.

    PubMed  CAS  Google Scholar 

  • Robertson D, Johnstone BM (1979) Aberrant tonotopic organization in the inner ear damaged by kanamycin. J Acoust Soc Am 66:466–469.

    PubMed  CAS  Google Scholar 

  • Robertson D, Johnstone BM (1981) Primary auditory neurons: nonlinear responses altered without changes in sharp tuning. J Acoust Soc Am 69:1096–1098.

    PubMed  CAS  Google Scholar 

  • Robertson D, Manley GA (1974) Manipulation of frequency analysis in the cochlear ganglion of the guinea pig. J Comp Physiol 91:363–375.

    Google Scholar 

  • Robles L, Rhode WS, Geisler CD (1976) Transient response of the basilar membrane measured in squirrel monkey using the Mössbauer effect. J Acoust Soc Am 59:926–939.

    PubMed  CAS  Google Scholar 

  • Robles L, Ruggero MA, Rich NC (1986a) Mössbauer measurements of the mechanical response to single-tone and two-tone stimuli at the base of the chinchilla cochlea. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral Auditory Mechanisms. Berlin: Springer-Verlag, pp. 121–128.

    Google Scholar 

  • Robles L, Ruggero MA, Rich NC (1986b) Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input-output functions, tuning curves, and response phases. J Acoust Soc Am 80:1364–1374.

    PubMed  CAS  Google Scholar 

  • Robles L, Ruggero MA, Rich NC (1989) Nonlinear interactions in the mechanical response of the cochlea to two-tone stimuli. In: Wilson JP, Kemp DT (eds) Cochlear Mechanisms—Structure, Function and Models. London: Plenum, pp. 369–375.

    Google Scholar 

  • Robles L, Ruggero MA, Rich NC (1990) Two-tone distortion products in the basilar membrane of the chinchilla cochlea. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) Mechanics and Biophysics of Hearing. New York: Springer-Verlag, pp. 304–311.

    Google Scholar 

  • Robles L, Ruggero MA, Rich NC (1991) Two-tone distortion in the basilar membrane of the cochlea. Nature 349:413–414.

    PubMed  CAS  Google Scholar 

  • Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol 30:769–793.

    PubMed  CAS  Google Scholar 

  • Ruggero MA (1973) Responses to noise of auditory-nerve fibers in the squirrel monkey. J Neurophysiol 36:569–587.

    PubMed  CAS  Google Scholar 

  • Ruggero MA (1980) Systematic errors in indirect estimates of basilar membrane travel times. J Acoust Soc Am 67:707–710.

    PubMed  CAS  Google Scholar 

  • Ruggero MA, Rich NC (1983) Chinchilla auditory-nerve responses to low-frequency tones. J Acoust Soc Am 73:2096–2108.

    PubMed  CAS  Google Scholar 

  • Ruggero MA, Rich NC (1987) Timing of spike initiation in cochlear afferents: dependence on site of innervation. J Neurophysiol 58:379–403.

    PubMed  CAS  Google Scholar 

  • Ruggero MA, Rich NC (1989) “Peak splitting”: Intensity effects in cochlear afferent responses to low-frequency tones. In: Wilson JP, Kemp DT (eds) Cochlear Mechanisms—Structure, Function and Models. London: Plenum, pp. 259–266.

    Google Scholar 

  • Ruggero MA, Rich NC (1991a) Application of a commercially-manufactured Doppler-shift laser velocimeter to the measurement of basilar-membrane vibration. Hear Res 51:215–230.

    PubMed  CAS  Google Scholar 

  • Ruggero MA, Rich NC (1991b) Furosemide alters organ of Corti mechanics: Evidence for feedback of outer hair cells upon the basilar membrane. J Neurosci 11:1057–1067.

    PubMed  CAS  Google Scholar 

  • Ruggero MA, Semple MN (1991) Acoustics, physiological. In: Trigg GL (ed) Encyclopedia of Applied Physics, Vol. I. Weinheim, Germany: VCH Publishers, pp. 213–259.

    Google Scholar 

  • Ruggero MA, Rich NC, Recio A (1992) Basilar membrane responses to clicks. In: Cazals Y, Demany L, Horner K (eds) Auditory Physiology and Perception. London: Pergamon Press, (in press).

    Google Scholar 

  • Ruggero MA, Rich NC, Robles, L (1991) Comparison of cochlear-nerve and basilar-membrane responses to low-frequency tones: Absence of macrome-chanical basis for “peak splitting.” Assoc Res Otolaryngol Midwinter Meet Abst 14:78.

    Google Scholar 

  • Ruggero MA, Robles L, Rich NC (1986) Basilar membrane mechanics at the base of the chinchilla cochlea. II. Responses to low-frequency tones and relationship to microphonics and spike initiation in the VIII Nerve. J Acoust Soc Am 80:1375–1383.

    PubMed  CAS  Google Scholar 

  • Ruggero MA, Robles L, Rich NC (1992) Two-tone suppression in the basilar membrane of the chinchilla cochlea: mechanical basis of auditory-nerve rate suppression. J Neurophysiol. (submitted).

    Google Scholar 

  • Ruggero MA, Santi PA, Rich NC (1982) Type II cochlear ganglion cells in the chinchilla. Hear Res 8:339–356.

    PubMed  CAS  Google Scholar 

  • Ruggero MA, Rich NC, Robles L, Shivapuja B (1990) Middle-ear response in the chinchilla and its relationship to mechanics at the base of the cochlea. J Acoust Soc Am 87:1612–1629.

    PubMed  CAS  Google Scholar 

  • Russell IJ (1983) Origin of the receptor potential in inner hair cells of the mammalian cochlea—evidence for Davis’ theory. Nature 301:334–336.

    PubMed  CAS  Google Scholar 

  • Russell IJ, Sellick PM (1978) Intracellular studies of hair cells in the mammalian cochlea. J Physiol 284:261–290.

    PubMed  CAS  Google Scholar 

  • Russell IJ, Sellick PM (1983) Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells. J Physiol 338:179–206.

    PubMed  CAS  Google Scholar 

  • Russell IJ, Richardson GP, Cody AR (1986) Mechanosensitivity of mammalian auditory hair cells in vitro. Nature 321:517–519.

    PubMed  CAS  Google Scholar 

  • Sachs MB (1984) Speech encoding in the auditory nerve. In: Berlin CI (ed) Hearing Science—Recent Advances. San Diego: College-Hill Press, pp. 263–307.

    Google Scholar 

  • Sachs MB, Abbas PJ (1974) Rate versus level functions for auditory-nerve fibers in cats: Tone-burst stimuli. J Acoust Soc Am 56:1835–1847.

    PubMed  CAS  Google Scholar 

  • Sachs MB, Hubbard AE (1981) Responses of auditory-nerve fibers to characteristic-frequency tones and low-frequency suppressors. Hear Res 4:309–324.

    PubMed  CAS  Google Scholar 

  • Sachs MB, Kiang NYS (1968) Two-tone inhibition in auditory-nerve fibers. J Acoust Soc Am 43:1120–1128.

    PubMed  CAS  Google Scholar 

  • Sachs MB, Winslow RL, Blackburn CC (1988) Representation of speech in the auditory periphery. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: Wiley, pp. 747–774.

    Google Scholar 

  • Sachs MB, Winslow RL, Sokolowski BHA (1989) A computational model of rate-level functions from cat auditory-nerve fibers. Hear Res 41:61–70.

    PubMed  CAS  Google Scholar 

  • Sachs MB, Young ED, Schalk TB, Bernardin CP (1980) Suppression effects in the responses of auditory-nerve fibers to broadband stimuli. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological and Behavioural Studies in Hearing. Delft, The Netherlands: Delft Univ. Press, pp. 284–291.

    Google Scholar 

  • Salvi R, Henderson D, Hamernik RP, Parkins C (1980) VIII Nerve responses to click stimuli in normal and pathological cochleas. Hear Res 2:335–342.

    PubMed  CAS  Google Scholar 

  • Salvi R, Perry J, Hamernik RP, Henderson D (1982) Relationship between cochlear pathologies and auditory nerve and behavioral responses following acoustic trauma. In: Hamernik RP, Henderson D, Salvi R (eds) New Perspectives on Noise-Induced Hearing Loss. New York: Raven, pp. 165–188.

    Google Scholar 

  • Schalk TB, Sachs MB (1980) Nonlinearities in auditory-nerve fiber responses to bandlimited noise. J Acoust Soc Am 67:903–913.

    PubMed  CAS  Google Scholar 

  • Schmiedt RA (1982) Boundaries of two-tone rate suppression of cochlear-nerve activity. Hear Res 7:335–351.

    PubMed  CAS  Google Scholar 

  • Schmiedt RA (1984) Acoustic injury and the physiology of hearing. J Acoust Soc Am 76:1293–1317.

    PubMed  CAS  Google Scholar 

  • Schmiedt RA, Zwislocki JJ (1980) Effects of hair cell lesions on responses of cochlear nerve fibers. II. Single- and two-tone intensity functions in relation to tuning curves. J Neurophysiol 43:1390–1405.

    PubMed  CAS  Google Scholar 

  • Schmiedt RA, Zwislocki JJ, Hamernik RP (1980) Effects of hair cell lesions on responses of cochlear nerve fibers. I. Lesions, tuning curves, two-tone inhibition, and responses to trapezoidal-wave patterns. J Neurophysiol 43:1367–1389.

    PubMed  CAS  Google Scholar 

  • Sellick PM, Russell IJ (1979) Two-tone suppression in cochlear hair cells. Hear Res 1:227–236.

    Google Scholar 

  • Sellick PM, Patuzzi R, Johnstone BM (1982a) Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. J Acoust Soc Am 72:131–141.

    PubMed  CAS  Google Scholar 

  • Sellick PM, Patuzzi R, Johnstone BM (1982b) Modulation of responses of spiral ganglion cells in the guinea pig cochlea by low frequency sounds. Hear Res 7:199–221.

    PubMed  CAS  Google Scholar 

  • Sellick PM, Patuzzi R, Johnstone BM (1983) Comparison between the tuning properties of inner hair cells and basilar membrane motion. Hear Res 10:93–100.

    PubMed  CAS  Google Scholar 

  • Sellick PM, Yates GK, Patuzzi R (1983) The influence of Mössbauer source size and position on phase and amplitude measurements of the guinea pig basilar membrane. Hear Res 10:101–108.

    PubMed  CAS  Google Scholar 

  • Sewell WF (1984a) The effects of furosemide on the endocochlear potential and auditory-nerve fiber tuning. Hear Res 15:69–72.

    PubMed  CAS  Google Scholar 

  • Sewell WF (1984b) The relation between the endocochlear potential and spontaneous activity in auditory nerve fibres of the cat. J Physiol 347:685–696.

    PubMed  CAS  Google Scholar 

  • Siegel JH, Kim DO, Molnar CE (1982) Effects of altering organ of Corti on cochlear distortion products f2 - f1 and 2f1 - f2. J Neurophysiol 47:303–328.

    PubMed  CAS  Google Scholar 

  • Sinex DG, Geisler CD (1981) Auditory-nerve fiber responses to frequency-modulated tones. Hear Res 4:127–148.

    PubMed  CAS  Google Scholar 

  • Smith RL (1985) Comments on “Very rapid adaptation in the guinea pig auditory nerve” (Yates GK, Robertson D, Johnstone BM, 1985, Hearing Research 17, 1–12). Hear Res 19:89–92.

    PubMed  CAS  Google Scholar 

  • Smith RL (1988) Encoding of sound intensity by auditory neurons. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: Wiley, pp. 243–274.

    Google Scholar 

  • Smith RL, Brachman ML (1980) Response modulation of auditory-nerve fibers by AM stimuli: Effects of average intensity. Hear Res 2:123–133.

    PubMed  CAS  Google Scholar 

  • Smith RL, Brachman ML (1982) Adaptation in auditory-nerve fibers: A revised model. Biol Cybernet 44:107–120.

    CAS  Google Scholar 

  • Smith RL, Zwislocki JJ (1975) Short-term adaptation and incremental responses of single auditory-nerve fibers. Biol Cybernet 17:169–182.

    CAS  Google Scholar 

  • Smoorenburg GF (1972) Combination tones and their origin. J Acoust Soc Am 52:615–632.

    Google Scholar 

  • Sokolich WG, Hamernik RP, Zwislocki JJ, Schmiedt RA (1976) Inferred response polarities of cochlear hair cells. J Acoust Soc Am 59:963–974.

    PubMed  CAS  Google Scholar 

  • Sokolowski BHA, Sachs MB, Goldstein JL (1989) Auditory nerve rate-level functions for two-tone stimuli: Possible relation to basilar membrane nonlinearity. Hear Res 41:115–124.

    PubMed  CAS  Google Scholar 

  • Spoendlin H (1988) Neural anatomy of the inner ear. In: Jahn AF, Santos-Sacchi J (eds) Physiology of the Ear. New York: Raven Press, pp. 201–219.

    Google Scholar 

  • Stypulkowski PH (1990) Mechanisms of salicylate ototoxicity. Hear Res 46:113–146.

    PubMed  CAS  Google Scholar 

  • Tasaki I (1954) Nerve impulses in individual auditory nerve fibers of guinea pig. J Neurophysiol 17:97–122.

    PubMed  CAS  Google Scholar 

  • Tasaki I, Fernández C (1952) Modification of cochlear microphonics and action potentials by KCl solution and by direct currents. J Neurophysiol 15:497–512.

    PubMed  CAS  Google Scholar 

  • Teas DC, Konishi T, Wernick JS (1970) Effects of electrical current applied to cochlear partition on discharges in individual auditory-nerve fibers. II. Interaction of electrical polarization and acoustic stimulation. J Acoust Soc Am 47:1527–1537.

    PubMed  CAS  Google Scholar 

  • Teich MC, Johnson DH, Kumar AR, Turcott RG (1990) Rate fluctuations and fractional power-law noise recorded from cells in the lower auditory pathway of the cat. Hear Res 46:41–52.

    PubMed  CAS  Google Scholar 

  • Weiss TF, Rose C (1988) A comparison of synchronization filters in different auditory receptor organs. Hear Res 33:175–180.

    PubMed  CAS  Google Scholar 

  • Westerman LA, Smith RL (1984) Rapid and short-term adaptation in auditory nerve responses. Hear Res 15:249–260.

    PubMed  CAS  Google Scholar 

  • Wever EG, Bray CW, Willey CF (1937) The response of the cochlea to tones of low frequency. J Exp Psychol 20:336–349.

    Google Scholar 

  • Wiederhold ML (1986) Physiology of the olivocochlear system. In: Altschuler RA, Bobbin RP, Hoffman DW (eds) Neurobiology of Hearing: the Cochlea. New York: Raven Press, pp. 349–370.

    Google Scholar 

  • Winter IM, Robertson D, Yates G (1990) Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibers. Hear Res 45:191–202.

    PubMed  CAS  Google Scholar 

  • Woolf NK, Ryan AF, Bone RC (1981) Neural phase-locking properties in the absence of cochlear outer hair cells. Hear Res 4:335–346.

    PubMed  CAS  Google Scholar 

  • Yates GK (1987) Dynamic effects in the input-output relationship of auditory nerve. Hear Res 27:221–230.

    PubMed  CAS  Google Scholar 

  • Yates GK, Robertson D, Johnstone BM (1985) Very rapid adaptation in the guinea pig auditory nerve. Hear Res 17:1–12.

    PubMed  CAS  Google Scholar 

  • Yates GK, Winter IM, Robertson D (1990) Basilar membrane nonlinearity determines auditory nerve rate-intensity functions and cochlear dynamic range. Hear Res 45:203–220.

    PubMed  CAS  Google Scholar 

  • Young E, Sachs MB (1973) Recovery from sound exposure in auditory nerve fibers. J Acoust Soc Am 54:1535–1543.

    PubMed  CAS  Google Scholar 

  • Zwicker E (1986) Suppression and (2f1 - f2) difference tones in a nonlinear cochlear preprocessing model with active feedback. J Acoust Soc Am 80:163–176.

    PubMed  CAS  Google Scholar 

  • Zwislocki JJ, Sokolich WG (1973) Velocity and displacement responses in auditory-nerve fibers. Science 182:64–66.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Ruggero, M.A. (1992). Physiology and Coding of Sound in the Auditory Nerve. In: Popper, A.N., Fay, R.R. (eds) The Mammalian Auditory Pathway: Neurophysiology. Springer Handbook of Auditory Research, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2838-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2838-7_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97801-7

  • Online ISBN: 978-1-4612-2838-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics