Skip to main content

Part of the book series: Partially Ordered Systems ((PARTIAL.ORDERED))

Abstract

The discovery of icosahedral phase alloys by Shechtman et al. [1] has provided us with an opportunity to reevaluate many of our long-held ideas and prejudices about the relationship between positional order, bond-orientational order, and periodic translational order in condensed matter systems. Traditionally, we have grouped solids into two categories. Glasses are viewed as solids which, at best, can be characterized as having short-range chemical order. Crystals, at the other extreme, are described as a periodic stacking of well-defined unit cells, identically decorated with atoms, into structures which have long-range periodic translational order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Shechtman et al.Phys. Rev. Lett. 53, 1951 (1985).

    Article  ADS  Google Scholar 

  2. C. KittelIntroduction to Solid State PhysicsWiley, New York, 1986, P. 9.

    Google Scholar 

  3. For example, see D.P. Shoemaker and C.B. Shoemaker, inAperiodicity and Order, Vol..1: Introduction to Quasicrystalsedited by M.V. Jarić, Academic, Boston, 1988, pp. 2–40.

    Google Scholar 

  4. These electron diffraction patterns were kindly provided by K.F. Kelton and P. Gibbons at Washington University.

    Google Scholar 

  5. For the interested reader, the description and evolution of quasicrystalline structures may be found in the proceedings of three international conferences on quasicrystals held in Les Houches (1985), Beijing (1987), and Vista Hermosa, Mexico (1989). In addition, several series of reprints and review essays are available: C.L. Henley Comm. Condens. Matt. Phys. 23, 59 (1987);

    Google Scholar 

  6. P.J. Steinhardt and S. Ostlund, eds.The Physics of QuasicrystalsPlenum, New York, 1987;

    MATH  Google Scholar 

  7. M.V. JarićAperiodicity and OrderVols. 1–3, Academic, Boston, 198–1989.

    Google Scholar 

  8. R. PenroseBull. Inst. Math. Appl. 10266 (1974);

    Google Scholar 

  9. M. GardnerSci. Amer. 236, 110 (1977).

    Article  Google Scholar 

  10. A.L. MackayPhysica 114A, 609 (1982);

    MathSciNet  ADS  Google Scholar 

  11. P. Kramer and R. NeriActa Cryst. A 40, 580 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Levine and P. SteinhardtPhys. Rev. Lett. 53, 2477 (1984).

    Article  ADS  Google Scholar 

  13. For example, see Ref. 6.

    Google Scholar 

  14. To some degree, this obstacle can be overcome by including specific defects in the tilings termed “decapods”;

    Google Scholar 

  15. G.Y. Onoda et al.Phys. Rev. Lett. 60, 2653 (1989);

    Article  ADS  Google Scholar 

  16. G.Y. Onoda et al.Phys. Rev. Lett. 62, 1210 (1989).

    Article  ADS  Google Scholar 

  17. However, this is still a point which generates strong debate;

    Google Scholar 

  18. see M.V. Jarić and M. RonchettiPhys. Rev. Lett. 62, 1209 (1989).

    Article  ADS  Google Scholar 

  19. M. Widom, K.J. Strandburg, and R.H. SwendsenPhys. Rev. Lett. 58, 706 (1987).

    Article  ADS  Google Scholar 

  20. M. Widom, D.P. Deng, and C.L. HenleyPhys. Rev. Lett. 63, 310 (1989).

    Article  ADS  Google Scholar 

  21. K.J. Strandburg, L.H. Tang, and M.V. JarićPhys. Rev. Lett. 63, 314 (1989).

    Article  ADS  Google Scholar 

  22. L.H. TangPhys. Rev. Lett. 64, 2390 (1990).

    Article  ADS  Google Scholar 

  23. For a general discussion, see P. Bak and A.I. Goldman, inAperiodicity and Order Vol. 1: Introduction to Quasicrystals,edited by M.V. Jarié, Academic, Boston, 1988, pp. 143–170 and references therein.

    Google Scholar 

  24. P. BakPhys. Rev. Lett. 56, 861 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  25. For a review of the hydrodynamic modes in quasicrystals, see T.C. Lubensky in Ref. 16, pp. 199–280.

    Google Scholar 

  26. P.A. Kalugin, A.Y. Kitaev, and L.C. LevitovJETP Lett. 41145 (1985);

    ADS  Google Scholar 

  27. V. ElserPhys. Rev. B 32, 4892 (1985);

    Article  ADS  Google Scholar 

  28. Acta Cryst. A4236 (1986);

    Google Scholar 

  29. M. Duneau and A. KatzPhys. Rev. Lett. 54, 2688 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  30. P. Bancel et al.Phys. Rev. Lett. 54, 2422 (1985).

    Article  ADS  Google Scholar 

  31. D. Shechtman and I. BlechMetall. Trans. A 16, 1005 (1985).

    Article  Google Scholar 

  32. P.W. Stephens and A.I. GoldmanPhys. Rev. Lett. 56, 1168 (1986);

    Article  ADS  Google Scholar 

  33. P.W. Stephens and A.I. GoldmanPhys. Rev. Lett. 57, 2331 (1986);

    Article  ADS  Google Scholar 

  34. P.W. Stephens and A.I. GoldmanPhys. Rev. Lett. 57, 2770 (1986).

    Article  ADS  Google Scholar 

  35. A.I. Goldman and P.W. StephensPhys. Rev. B 37, 2826 (1988).

    Article  ADS  Google Scholar 

  36. V. Elser, in theProceedings of the XVth International Colloquium on Group Theoretical Methods in Physicsedited by R. Gilmore and D. Feng, World Scientific, Singapore, 1987, p. 105.

    Google Scholar 

  37. V. Elser, inAperiodicity and Order, Vol. 2: Extended Icosahedral Structuresedited by M.V. Jarić and D. Gratias, Academic, Boston, 1989, pp. 105–136.

    Google Scholar 

  38. D.P. DiVincenzoJ. Phys. 47(Paris), Colloq. C3, 237 (1986).

    Google Scholar 

  39. J.L. Robertson and S.C. Moss, preprint, 1990.

    Google Scholar 

  40. P.W. Stephens, in Ref. 25, pp. 37–104.

    Google Scholar 

  41. A. Garg and D. LevinePhys. Rev. Lett. 60, 2160 (1988).

    Article  ADS  Google Scholar 

  42. S. Hendricks and E. TellerJ. Chem. Phys. 10, 147 (1942).

    Article  ADS  Google Scholar 

  43. V. Elser and C. HenleyPhys. Rev. Lett. 55, 2883 (1985);

    Article  ADS  Google Scholar 

  44. P. Guyot and M. AudierPhil. Mag. B 52, L15 (1985).

    Article  Google Scholar 

  45. M. Marcus and V. ElserPhil. Mag. B 54, L101 (1986).

    Article  Google Scholar 

  46. M. Cooper and K. RobinsonActa Cryst. 20614 (1966).

    Article  Google Scholar 

  47. E. Cherkashin et al.Soviet Phys. Cryst. 8, 681 (1964).

    Google Scholar 

  48. C. Guryan et al.Phys. Rev. B 37, 8495 (1988).

    Article  ADS  Google Scholar 

  49. L.E. Levine, P.C. Gibbons, J.C. Holzer, and K.F. Kelton, preprint, 1990.

    Google Scholar 

  50. K.F. Kelton, P.C. Gibbons, and P.N. SabesPhys. Rev. B 38, 7810 (1988);

    Article  ADS  Google Scholar 

  51. P.C. Gibbons et al.Phil. Mag. B 59, 593 (1989).

    Article  Google Scholar 

  52. T. Ishimasa et al.Phil. Mag. Lett. 58, 157 (1988).

    Article  ADS  Google Scholar 

  53. C. Guryan et al.Phys. Rev. Lett. 62, 2409 (1989).

    Article  ADS  Google Scholar 

  54. P. BancelPhys. Rev. Lett. 63, 2741 (1989).

    Article  ADS  Google Scholar 

  55. J. Devaud-Rzepski et al.Phil. Mag. B 60, 855 (1989).

    Article  Google Scholar 

  56. S. Ebalard and F. SpaepenJ. Mater. Res. 4, 39 (1989).

    Article  ADS  Google Scholar 

  57. C.L. HenleyPhil. Mag. Lett. 58, 87 (1988).

    Article  ADS  Google Scholar 

  58. A.I. Goldman et al.Phys. Rev. Lett. 61, 1962 (1988).

    Article  ADS  Google Scholar 

  59. P.M. Horn et al.Phys. Rev. Lett. 57, 1444 (1986).

    Article  ADS  Google Scholar 

  60. For example, see Ref. 18.

    Google Scholar 

  61. P. Heiney et al.Science 238, 660 (1987).

    Article  ADS  Google Scholar 

  62. J.E.S. Socolar and D. WrightPhys. Rev. Lett. 59, 221 (1987).

    Article  ADS  Google Scholar 

  63. C. Guryan, Ph.D. dissertation, SUNY at Stony Brook (1990).

    Google Scholar 

  64. N.K. Mukhopadhyay et al.Phil. Mag. Lett. 56, 121 (1987).

    Article  ADS  Google Scholar 

  65. C. Dong et al.Scripta Metal. 20, 1155 (1986).

    Article  ADS  Google Scholar 

  66. X. Zhang.and K.F. KeltonPhil. Mag. Lett.(accepted).

    Google Scholar 

  67. F. Denoyer et al.J. Phys. 48, (Paris), 1357 (1987).

    Article  Google Scholar 

  68. P.C. Gibbons et al., in Ref. 12, p. 516.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Goldman, A.I. (1992). Icosahedral Glass Models for Quasicrystals. In: Strandburg, K.J. (eds) Bond-Orientational Order in Condensed Matter Systems. Partially Ordered Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2812-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2812-7_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7680-7

  • Online ISBN: 978-1-4612-2812-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics