Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 91))

Abstract

The cycles of base cations differ from those of N, P, and S in several important respects. Inorganically driven processes such as weathering, cation exchange, and soil leaching are often considerably more important in base cation cycles than in the cycles of N, P, and S, whereas organic processes such as heterotrophic immobilization and oxidation are typically less important (Figure 8.1). The fact that Ca, K, and Mg exist primarily as cations in solution whereas N, P, and S exist primarily as anions has major implications for the cycling of these nutrients and the effects of acid deposition upon these cycles. The introduction of H+, whether by atmospheric deposition or by internal processes, will directly impact the fluxes of Ca, K, and Mg via cation exchange or weathering processes. Thus, soil leaching is often of major importance in cation cycles, and many forest ecosystems show a net loss of base cations (in contrast to net gains of N and P; Cole and Rapp 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alban D.H. 1982. Effects of nutrient accumulation by aspen, spruce, pine on soil properties. Soil Sci. Soc. Am. J. 46: 853 – 861

    CAS  Google Scholar 

  • Abrahamsen G., Hornvedt R., Tveite B. 1977. Impacts of acid precipitation on forest ecosystems. Water Air Soil Pollut. 8: 57 – 73

    CAS  Google Scholar 

  • Abrahamsen G., Bjor K., Hornvedt R., Tveite B. 1980. Effects of acid precipitation on coniferous forest. In Drablos D., Tollan A., (eds.) Proceedings of the International Conference on the Ecological Impact of Acid Precipitation, pp. 58 – 63. SNSF Project, Oslo, Norway

    Google Scholar 

  • Berden M., Nilsson S.I., Rosen K., Tyler G. 1987. Soil acidification: Extent, Causes, Consequences. Report 3292, National Swedish Environmental Protection Board, Solna, Sweden

    Google Scholar 

  • Binkley D., Valentine D., Wells C., Valentine U. 1989. An empirical analysis of factors contributing to 20-year decline in soil pH in an old-field plantation of loblolly pine. Biogeochemistry 8: 39 – 54

    Article  Google Scholar 

  • Bondietti E.A. 1990. Descriptions of Research Sites in the Integrated Forest Study. ORNL/TM 11149, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Google Scholar 

  • Brown K.A., Roberts T.M. 1988. Effects of ozone on foliar leaching in Norway spruce (Picea abiesL. Karst): confounding factors due to NOx production during ozone generation. Environ. Pollut. 55: 55 – 73

    Article  CAS  Google Scholar 

  • Cole D.W., Johnson D.W. 1977. Atmospheric sulphate additions and cation leaching in a Douglas-fir ecosystem. Water Resour. Res. 13: 313 – 317

    CAS  Google Scholar 

  • Cole D.W., Rapp M. 1981. Elemental cycling in forest ecosystems. In Reichle D.E. (ed.) Dynamic Properties of Forest Ecosystems. Cambridge University Press, London, pp. 341 – 409

    Google Scholar 

  • Cronan C.S., Reiners W.A. 1983. Canopy processing of acidic precipitation by coniferous and deciduous forests in New England. Oecologia 59: 216 – 223

    Article  Google Scholar 

  • Eaton J.S., Likens G.E., Bormann F.H. 1973. Throughfall and stemflow chemistry in a northern hardwoods forest. J. Ecol. 61: 495 – 508

    Article  CAS  Google Scholar 

  • Evans L.S., Curry T.M., Lewin K.F. 1981. Responses of leaves of Phaesolus vulgarisL. to simulated acid rain. New Phytol. 88: 403 – 420

    Article  CAS  Google Scholar 

  • Fairfax J.A.W., Lepp N.W. 1975. Effects of simulated “cacid rain” on cation loss from leaves. Nature (London) 255: 324 – 325

    Article  CAS  Google Scholar 

  • Federer C.A., Hornbeck J.W., TrittonL.M., Martin C.W., Pierce R.S., Smith C.T. 1989. Long-term depletion of calcium and other nutrients in eastern U.S. forests. Environ. Manage. 13: 593 – 601

    Google Scholar 

  • Heiberg S.O., White D.P. 1953. Potassium deficiency of reforested pine and spruce stands in northern New York. Soil Sci. Soc. Am. Proc. 15: 369 – 376

    Article  Google Scholar 

  • Hindawi I.J., Rea J.A., Griffiths W.L. 1980. Response of bush bean exposed to acid mist. Am. J. Bot. 67: 168 – 172

    Article  CAS  Google Scholar 

  • Hubbell J.G., Lovett G.M. 1988. A chamber for ozone exposure and misting of branches on mature trees. In Proceeding of Workshop on the Role of Branch Studies, pp. 120 – 129. U.S. Environmental Protection Agency, Corvallis, Oregon

    Google Scholar 

  • Ingestad, T. 1979. Mineral nutrient requirements of Pinus sylvestrisand Picea abiesseedlings. Physiol. Plant. 45: 373 – 380

    Article  CAS  Google Scholar 

  • Ivens W.P.M.F., Draaijers G.P.J., Bos M.M., Bleuten W. 1988. Dutch Forests as Air Pollutant Sinks in Agricultural Areas. Report 37–09, Dutch Priority Programme on Acidification, State University of Utrecht, Holland

    Google Scholar 

  • Johannes A.J., Chen Y.L., Dackson K., Suleski T. 1986. Modeling throughfall chemistry and indirect measurement of dry deposition. Water Air Soil Pollut. 30: 211 – 216

    Article  CAS  Google Scholar 

  • Johnson D.W. 1981. The natural acidity of some unpolluted waters in southeastern Alaska and potential impacts of acid rain. Water Air Soil Pollut. 16: 243 – 252

    Article  CAS  Google Scholar 

  • Johnson D.W., Cole D.W. 1980. Anion mobility in soils: relevance to nutrient transport from terrestrial ecosystems. Environ. Int. 3: 79 – 90

    CAS  Google Scholar 

  • Johnson D.W., Richter D.D. 1984. The combined effects of atmospheric deposition, internal acid production, harvesting on nutrient gains and losses from forest ecosystems. In TAPPI Research and Development conference, Appleton, Wisconsin, Sept. 30-0ct. 3, 1984, pp. 149 – 156. TAPPI Press, Atlanta, Georgia

    Google Scholar 

  • Johnson D.W., Taylor G.E. 1989. Role of air pollution in forest decline in eastern North America. Water Air Soil Pollut. 48: 21 – 43

    Article  CAS  Google Scholar 

  • Johnson D.W., Todd D.E. 1983. Some relationships among aluminum, carbon, sulfate in a variety of forest soils. Soil Sci. Soc. Am. J. 47: 792 – 800

    CAS  Google Scholar 

  • Johnson D.W., Todd D.E. 1987. Nutrient export by leaching and whole-tree harvesting in a loblolly pine and mixed oak forest. Plant Soil 102: 99 – 109

    Article  Google Scholar 

  • Johnson D.W., Henderson G.S., Todd D.E. 1988a. Changes in nutrient distribution in forests and soils of Walker Branch Watershed, Tennessee, over an eleven-year period. Biogeochemistry 5: 275 – 293

    Article  CAS  Google Scholar 

  • Johnson D.W., Richter D.D., Lovett G.M., Lindberg S.E. 1985. The effects of atmospheric deposition on potassium, calcium, magnesium cycling in two de-ciduous forests. Can. J. For. Res. 15: 773 – 782

    Article  CAS  Google Scholar 

  • Johnson D.W., West D.C., Todd D.E., Mann L.K. 1982. Effects of sawlog vs. whole-tree harvesting on the nitrogen, phosphorus, potassium, calcium budgets of an upland mixed oak forest. Soil Sci. Soc. Am. J. 46: 1304 – 1309

    CAS  Google Scholar 

  • Johnson D.W., Cole D.W., Gessel S.P., Singer M.J., Minden R.V. 1977. Carbonic acid leaching in a tropical, temperate, subalpine, northern forest soil. Arc. Alp. Res. 9: 329 – 343

    CAS  Google Scholar 

  • Johnson D.W., Kelly J.M., Swank W.T., Cole D.W., Van Miegroet H., Hornbeck J.W., Pierce R.S., Van Lear D. 1988b. The effects of leaching and whole-tree harvesting on cation budgets of several forests. J. Environ. Qual. 17: 418 – 424

    Article  Google Scholar 

  • Johnson D.W., Friedland A.J., Van Miegroet H., Harrison R.B., Miller E., Lindberg S.E., Cole D.W., Schaefer D.A., Todd D.E. 1989. Nutrient status of some contrasting high-elevation forests in the eastern and western United States. In Proceedings of the U.S.-German Research Symposium, Burlington, VT, Oct. 18–23, 1987

    Google Scholar 

  • Johnson D.W., Van Miegroet H., Lindberg S.E., Todd D.E., Harrison R.B. 1991. Nutrient cycling in red spruce forests in the Great Smoky Mountains. Can. J. For. Res. 21: 769 – 787

    Article  CAS  Google Scholar 

  • Kononova M. 1966. Soil Organic Matter: Its Nature, Its Role in Soil Formation and Soil Fertility. Pergamon Press, New York

    Google Scholar 

  • Kramer P.J., Kozlowski T.T. 1979. Physiology of Woody Plants. Academic Press, New York

    Google Scholar 

  • Krause G.H.M., Prinz B., Jung K.D. 1982. Forest effects in West Germany. In Air Pollution and the Productivity of the Forest. Izaak Walton League of America, Washington, DC, pp. 297 – 332

    Google Scholar 

  • Krug E.C., Frink C.R. 1983. Acid rain on acid soil: a new perspective. Science 221: 520 – 525

    Article  PubMed  CAS  Google Scholar 

  • Lehninger R.A. 1970. Biochemistry. Worth, New York

    Google Scholar 

  • Lindberg S.E., Lovett G.M. 1983. Application of surrogate surface and leaf extraction methods to estimation of dry deposition to plant canopies. In Pruppacher H.R., Semonin R.G., Slinn W.G.N., (eds.) Precipitation Scavenging, Dry Deposition, Resuspension. Elsevier, New York, pp. 837 – 848

    Google Scholar 

  • Lindberg S.E., Silsbee D., Schaefer D.A., Owens J.G., Petty W. 1988a. A comparison of atmospheric exposure conditions at high- and low-elevation forests in the southern Appalachian Mountains. In Unsworth M., Fowler D. (eds.) Processes of Acidic Deposition in Mountainous Terrain. Kluwer Academic Publishers, London, pp. 321 – 344

    Google Scholar 

  • Lindberg S.E., Harriss R.C., Turner R.R., Shriner D.S., Huff D.D. 1979. Mechanisms and Rates of Atmospheric Seposition of Selected Trace Elements and Sulfate to a Deciduous Forest Watershed. ORNL/TM-6674, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Google Scholar 

  • Lindberg S.E., Lovett G.M., Schaefer D.A., Mitchell M., Cole D., Swank W., Foster N., Knoerr K. 1988b. In Lindberg S.E., Johnson D. (eds.) Third Annual Progress Report on the Integrated Forest Study. Electric Power Research Institute, Palo Alto, California, pp. 9 – 14

    Google Scholar 

  • Lindberg S.E., Lovett G.M., Schaefer D.A., Mitchell M., Cole D., Swank W., Foster N., Knoerr K. 1988b. In Lindberg S.E., Johnson D. (eds.) Third Annual Progress Report on the Integrated Forest Study. Electric Power Research Institute, Palo Alto, California, pp. 9 – 14

    Google Scholar 

  • Lovett G.M., Lindberg S.E. 1984. Dry deposition and canopy exchange in a mixed oak forest as determined by analysis of throughfall. J. Appl. Ecol. 21:1013– 1027

    Google Scholar 

  • Lovett G.M., Reiners W.A., Olson R.K. 1982. Cloud droplet deposition in sub- alpine balsam fir forests: hydrological and chemical inputs. Science 218:1303– 1304

    Google Scholar 

  • Lovett G.M., Lindberg S.E., Richter D.D., Johnson D.D. 1985. The effects of acidic deposition on cation leaching from a deciduous forest canopy. Can. J. For. Res. 15: 1055 – 1060

    Article  CAS  Google Scholar 

  • Marion G.K. 1979. Biomass and nutrient removal in long-rotation stands. In Leaf A.L. (ed.) Impact of Intensive Harvesting on Forest Nutrient Cycling. State University of New York, Syracuse, pp. 98 – 110

    Google Scholar 

  • McColl J.G., Cole D.W. 1968. A mechanism of cation transport in a forest soil. Northwest Sci. 42: 132 – 140

    Google Scholar 

  • Mollitor A.V., Raynal D.J. 1982. Acid precipitation and ionic movements in Adirondack forest soils Soil Sci. Soc. Am. J. 46: 133 – 137

    Google Scholar 

  • Olson R.K., Reiners W.A., Cronan C.S., Lang G.E. 1981. The chemistry and flux of throughfall and stemflow in subalpine balsam fir forests. Holarct. Ecol. 4:291– 300

    Google Scholar 

  • Parker, G.G. 1983. Throughfall and stemflow in the forest nutrient cycle. Adv. Ecol. Res. 13: 57 – 133

    Google Scholar 

  • Parker, G.G., Lovett G.M., Mickler R. 1987. Effects of low ozone dosage and acidified rain on foliar leaching in ozone-sensitive and -insensitive clones of Populus tremuloides. Bull. Ecol. Soc. Am. 68: 383 (abst.)

    Google Scholar 

  • Reed D.W., Tukey H.B., Jr. 1978b. Effect of pH on absorption of rubidium com-pounds by chrysanthemums. J. Am. Soc. Hortic. Sci. 103: 815 – 817

    CAS  Google Scholar 

  • Reed W.D., Tukey H.B., Jr. 1978a. Effect of pH on foliar absorption of phosphorous compounds by chrysanthemums. J. Am. Soc. Hortic. Sci. 103: 336 – 340

    Google Scholar 

  • Reiners W.A., Lovett G.M., Olson R.K. 1986. Chemical interactions of a forest canopy with the atmosphere. In Proceedings of the Forest/Atmosphere Interaction Workshop, pp. 111 – 146. U.S. Department of Energy, Office of Energy Research, Washington, D.C

    Google Scholar 

  • Reiners W.A., Olson R.K. 1984. Effects of canopy components on throughfall chemistry: an experimental analysis. Oecologia 63: 320 – 330

    Article  Google Scholar 

  • Reuss J.O. 1983. Implications of the Ca-Al exchange system for the effect of acid precipitation on soils J. Environ. Qual. 12: 591 – 595

    Article  CAS  Google Scholar 

  • Reuss J.O., Johnson D.W. 1986. Acid Deposition and the Acidification of Soil and Water. Ecological Studies No. 59, Springer-Verlag, New York

    Google Scholar 

  • Saxena V.K., Lin N.-H. 1989. Cloud Chemistry Measurements and Estimates of Acidic Deposition on an Above Cloudbase Coniferous Forest. Atmos. Environ. 23: 001 – 024

    Google Scholar 

  • Schaefer D.A., Reiners W.A. 1990. Throughfall chemistry and canopy processing mechanisms. In Lindberg W.E., Page A.L., Norton S.A., (eds.) Advances in Environmental Science, Volume 3, Acid Precipitation: Sources, Deposition, Canopy Interactions. Springer-Verlag, New York, pp. 241 – 284

    Google Scholar 

  • Schaefer D.A., Lindberg S.E., Nicolai D.R. 1988a. Ionic exchange rates as determined by foliar surface rinsing. Bull. Ecol. Soc. Am. 69: 285–286 (abstr.)

    Google Scholar 

  • Schaefer D.A., Reiners W.A., Olson R.K. 1988b. Factors controlling the chemical alteration of throughfall in a subalpine balsam fir canopy. Environ. Exp. Bot. 28: 175 – 189

    Google Scholar 

  • Scherbatskoy T., Klein R.M. 1983. Response of spruce and birch foliage to leaching by acidic mists. J. Environ. Qual. 12: 189 – 193

    Article  CAS  Google Scholar 

  • Schier G.A. 1987. Throughfall chemistry in a red maple provenance plantation sprayed with “acid rain.” Can. J. For. Res. 17: 660 - 665

    CAS  Google Scholar 

  • Skeffington R.A., Roberts T.M. 1985. The effects of ozone and acid mist on Scots pine saplings. Oecologia (Berlin) 65: 201 – 206

    Article  Google Scholar 

  • Stone E.L., Kszystyniak R. 1977. Conservation of potassium in the Pinus resinosaecosystem. Science 198: 192 – 194

    Article  PubMed  CAS  Google Scholar 

  • Swank W.T., Caskey W.H. 1982. Nitrate depletion in a second-order mountain stream. J. Environ. Qual. 11: 581 – 584

    Article  CAS  Google Scholar 

  • Tukey H.B. Jr. 1980. Some effects of rain and mist on plants, with implications for acid precipitation. In Hutchinson T.C., Havas M. (eds.) Effects of Acid Precipitation on Terrestrial Ecosystems. Plenum, New York, pp. 141 – 149

    Google Scholar 

  • Ugolini F.C., Minden R., Dawson H., Zachara J. 1977. An example of soil processes in the Abies amabiliszone of Central Cascades, Washington. Soil Sci. 124: 291 – 302

    Article  CAS  Google Scholar 

  • Ulrich B. 1983. Soil acidity and its relation to acid deposition. In Ulrich B., Pankrath J. (eds.) Effects of Accumulation of Air Pollutants in Ecosystems. Reidel, Dordrecht, pp. 127 – 146

    Google Scholar 

  • Ulrich B., Mayer R., Khanna P.K. 1980. Chemical changes due to acid precipitation in a loess-derived soil in central Europe. Soil Sci. 130: 193 – 199

    Article  CAS  Google Scholar 

  • Van Miegroet H., Cole D.W. 1984. The impact of nitrification on soil acidification and cation leaching in red alderecosystem. J. Environ. Qual. 13: 586 – 590

    Article  Google Scholar 

  • Vitousek P.M., Gosz J.R., Grier C.C., Melillo J.M., Reiners W.A., Todd R.L. 1979. Nitrate losses from disturbed ecosystems. Science 204: 469 – 474

    Article  PubMed  CAS  Google Scholar 

  • Waring R.H., Schlesinger W.H. 1985. Forest Ecosystems: Concepts and Management. Academic Press, New York

    Google Scholar 

  • Wood T., Bormann F.H. 1975. Increases in foliar leaching caused by acidification of an artificial mist. Ambio 4: 169 – 171

    CAS  Google Scholar 

  • Wright R.F., Norton S.A., Brakke D.F., Frogner T. 1988. Experimental verification of episodic acidification of freshwaters by sea salts. Nature (London) 334:422– 424

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Johnson, D.W. (1992). Base Cations. In: Johnson, D.W., Lindberg, S.E. (eds) Atmospheric Deposition and Forest Nutrient Cycling. Ecological Studies, vol 91. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2806-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2806-6_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97632-7

  • Online ISBN: 978-1-4612-2806-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics