Synthesis and Modeling of the Results of the Integrated Forest Study

  • D. W. Johnson
  • S. E. Lindberg
Part of the Ecological Studies book series (ECOLSTUD, volume 91)

Abstract

The opportunity to summarize and synthesize the results of a major study such as the Integrated Forest Study (IFS) ultimately falls to those individuals who coordinated the study and edited this volume. Because summaries and syntheses are not effectively produced by committee, they necessarily reflect the opinions of the editors. This synthesis is no exception. We are pleased to have this opportunity to summarize the findings of all the IFS scientists and to express our personal interpretations and opinions of the project results. Similarly, the modeling activities of the IFS have been largely conducted and coordinated by a small group. However, they incorporate the results of several workshops, numerous laboratory studies, and the field data that were collected by the IFS scientists. None of the material in this chapter could have been prepared without the dedicated help and cooperation of all the IFS participants, which is gratefully acknowledged.

Keywords

Biomass Phosphorus Hydrous Oxide Ozone Lignin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binkley D., Valentine D., Wells C., Valentine, U. 1989. An empirical model of the factors contributing to 20-yr decrease in soil pH in an old-field plantation of loblolly pine. Biogeochemistry 8: 39 – 54CrossRefGoogle Scholar
  2. Binkley D., Richter. D. 1987. Nutrient cycles and H+ budgets of forest ecosystems. Adv. Ecol. Res. 16: 1 – 51Google Scholar
  3. Boyle J.R., Phillips J.J., Ek A.R. 1973. –Whole-tree– harvesting: nutrient budget evaluation. J. For. 71:760–762Google Scholar
  4. Chen C.W., Hudson R.J.M., Gherini S.A., Dean J.D., Goldstein R.A. 1983. Acid Rain Model: Canopy Module. J. Environ. Eng. 109: 585 – 603CrossRefGoogle Scholar
  5. Church M.R., Thornton K.W., Shaffer P.W., Stevens D.L., Rochelle B.P., HoldrenG.R., Johnson M.G., Lee J.J., Turner R.S., nCassell D.L., LammersD.A., Campbell W.G., Liff C.I., Brandt C.C., Liegel L.H., Bishop G.D., Mortenson D.C., Pierson S.S., Schmoyer D.D. Pierson, S.S. D.D. Schmoyer. 1989. Direct/Delayed Response Project: Future Effects of Long-Term Sulfur Deposition on Surface Water Chemistry in the Northeast and Southern Blue Ridge Province. EPA Report EPA/600/3-89/06 la, U.S. EPA ORD, Washington, D.C., ERL, Corvallis, Oregon. U.SGoogle Scholar
  6. Cole D.W., Rapp M. 1981. Elemental cycling in forest ecosystems. In Reichle D.E. (ed.) Dynamic Properties of Forest Ecosystems. Cambridge University Press, London, pp. 341 – 409Google Scholar
  7. Cole D.W., Gessel S.P., Dice S.F. 1968. Distribution and cycling of nitrogen, phosphorus, potassium, calcium in a second-growth Douglas-fir forest. In Young H.E. (ed.) Primary Production and Mineral Cycling in Natural Ecosystems. University of Maine Press, Orono, Maine, pp. 197 – 213Google Scholar
  8. Cronan C.S. 1985. Biogeochemical Influence of vegetation and soils in the ILWAS watersheds. Water Air Soil Pollut. 26: 354 – 371Google Scholar
  9. Curlin J.W. 1970. Nutrient cycling as a factor in site productivity and forest fertilization. In Youngberg C.T., Davey C.R. (eds.) Tree Growth and Forest Soils. Oregon State University Press, Corvallis, pp. 313 – 326Google Scholar
  10. David M.B., Mitchell M.J., Nakas J.P. 1982. Organic and inorganic sulfur constituents of a forest soil and their relationship to microbial activity. Soil Sci. Soc. Am. J. 46: 847 – 852Google Scholar
  11. Engstrom A., Backstrand G., Stenram H. (eds.) 1971. Air Pollution across National Boundaries: The Impact on the Environment of Sulfur in Air and Precipitation. Rep. No. 93, Ministry for Foreign Affairs/Ministry for Agriculture, Stockholm, SwedenGoogle Scholar
  12. Federer C.A., Hornbeck J.W., Tritton L.M., Martin C.W., Pierce R.S., Smith, C.T. 1989. Long-term depletion of calcium and other nutrients in eastern U.S. Forests. Environ. Manage. 13: 593 – 601Google Scholar
  13. Foster N. W., Nicholson J.A., Hazlett P.W. 1989. Temporal variation in nitrate and nutrient cations in drainage waters from a deciduous forest. J. Environ. Qual. 18: 238 – 244CrossRefGoogle Scholar
  14. Fox D.G., Bartuska A., Byrne J., Cowling E., Fisher R., Likens G., Lindberg S., Linthurst R., Messer J., Nichols D. 1989. A Screening Procedure to Evaluate Air Pollution Effects on Class I Wilderness Areas. General Technical Report RM- 168, U.S. Department of Agriculture Forest Service, Rocky Mt. Forest and Range Experiment Station. RM-168Google Scholar
  15. Gessel S.P., Cole D.W., Steinbrenner E.C. 1973. Nitrogen balances in forest ecosystems of the Pacific Northwest. Soil Biol. Biochem. 5: 19 – 34Google Scholar
  16. Gherini S.A., Mok L., Hudson R.J., Davis G.F., Chen C.W., Goldstein R.A. 1985. The ILWAS Model: formulation and application. Water Air Soil Pollut. 26: 425 – 459Google Scholar
  17. Gherini S., Munson R., Altwicker E., April R., Chen C., Clesceri N., Cronan C., Driscoll C., Johannes A., Newton R., Peters N., Schofield C. 1989. Regional Integrated Lake-Watershed Acidification Study (RILWAS): Summary of Major Findings. EPRI Report EN-6641, Electric Power Research Institute, Palo Alto, CaliforniaGoogle Scholar
  18. Goldstein et al. 1984. Integrated lake-watershed acidification study (ILWAS): a mechanistic ecosystem analysis. Trans. R. Soc. Lond. B 305: 409 – 425CrossRefGoogle Scholar
  19. Heiberg S.O., White D.P. 1953. Potassium deficiency of reforested pine and spruce stands in northern New York. Soil Sci. Soc. Am. Proc. 15: 369 - 376CrossRefGoogle Scholar
  20. Johnson D.W. 1984. Sulfur cycling in forests. Biogeochemistry 1: 29 – 43CrossRefGoogle Scholar
  21. Johnson D.W., Cole D.W. 1977. Sulfate mobility in an outwash soil in western Washington. Water Air Soil Pollut. 7: 489 – 495CrossRefGoogle Scholar
  22. Johnson D.W., Henderson G.S. 1979. Sulfate adsorption and sulfur fractions in a highly weathered soil under a mixed deciduous forest. Soil Sci. 128: 34 – 40CrossRefGoogle Scholar
  23. Johnson D. W., Todd D. E. 1983. Some relationships among aluminum, carbon, sulfate in a variety of forest soils. Soil Sci. Soc. Am. J. 47: 792 - 800Google Scholar
  24. Johnson D.W., Todd D.E. 1987. Nutrient export by leaching and whole-tree harvesting in a loblolly pine and mixed oak forest. Plant Soil 102: 99 – 109CrossRefGoogle Scholar
  25. Johnson D.W., Henderson G.S., Todd D.E. 1988. Changes in nutrient distribution in forests and soils of Walker Branch Watershed over an eleven-year period. Biogeochemistry 5: 275 – 293CrossRefGoogle Scholar
  26. Johnson D.W., Henderson G.S., Todd D.E. 1981. Evidence of modern accumulation of sulfate in an east Tennessee forested Ultisol. Soil Sci. 132: 422 – 426CrossRefGoogle Scholar
  27. Johnson D.W., West D.C., Todd D.E., Mann L.K. 1982a. Effects of sawlog versus whole-tree harvesting on the nitrogen, phosphorus, potassium, calcium budgets of an upland mixed oak forest. Soil Sci. Soc. Am. J. 46: 1304 – 1309Google Scholar
  28. Johnson D. W., Hornbeck J.W., Kelly J.M, Swank W.T., Todd D.E. 1980. Regional patterns of soil sulfate accumulation: relevance to ecosystem sulfur budgets. In Shriner D.S., Richmond C.R., Lindberg S.E. (eds.) Atmospheric Sulfur Deposition: Environmental Impact and Health Effects. Ann Arbor Science, Ann Arbor, Michigan, pp. 507 – 520Google Scholar
  29. Johnson D.W., Richter D.D., Van Miegroet H., Cole D.W., Kelly J.M. 1986c. Sulfur cycling in five forest ecosystems. Water Air Soil Pollut. 30: 965 – 979CrossRefGoogle Scholar
  30. Johnson D.W., Richter D.D., Van Miegroet H., Cole D.W., Kelly J.M. 1986c. Sulfur cycling in five forest ecosystems. Water Air Soil Pollut. 30: 965 – 979CrossRefGoogle Scholar
  31. Johnson D.W., Henderson G.S., Huff D.D., Lindberg S.E., Richter D.D., Shriner D.S., Todd D.E., Turner J. 1982b. Cycling of organic and inorganic sulphur in a chestnut oak forest Oecologia 54: 141 – 148Google Scholar
  32. Lindberg S.E., Garten C.T. 1988. Sources of sulfur in forest canopy throughfall. Nature (London) 336: 148 – 151CrossRefGoogle Scholar
  33. Lindberg S.E., Lovett G.M., Richter D.D., Johnson D.W. 1986. Atmospheric deposition and canopy interactions of major ions in a forest. Science 231: 141 – 145PubMedCrossRefGoogle Scholar
  34. Melillo J.M., Aber J.D., Murstore J.F. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63: 621 – 623CrossRefGoogle Scholar
  35. Munson R.K., Gherini S.A. 1991. Processes influencing the acid-base chemistry of surface waters, pp. 9–34. In: Acid Deposition and Aquatic Ecosystems: Regional Case Studies. Charles D.F. (ed.) Springer-Verlag, New YorkGoogle Scholar
  36. NADP. 1990. NADP/NTN Annual Data Summary of Precipitation Chemistry in the United States for 1989. United States National Atmospheric Deposition Program, Coordination Office, Natural Resource Ecology Lab, Colorado State University, Fort Collins, ColoradoGoogle Scholar
  37. National Research Council (NRC). 1983. Atmospheric Processes in Eastern North America. National Academy of Sciences Press, Washington, D.CGoogle Scholar
  38. Pastor J., Post W.M. 1986. Influence of climate, soil moisture, succession on forest carbon and nitrogen cycles. Biogeochemistry 2: 3 – 27CrossRefGoogle Scholar
  39. Peters N.E., Driscoll C.T. 1987. Hydrogeologic controls on surface water chemistry in the adirondack region of New York State. Biogeochemistry 3: 163 – 180CrossRefGoogle Scholar
  40. Raynal D.J., Joslin J.D., Thornton F.C., Schadedel M., Henderson G.S. 1990. Sensitivity of tree seedlings to aluminum: III. Red spruce and loblolly pine. J. Environ. Qual. 19: 180 – 187CrossRefGoogle Scholar
  41. Reuss J.O. 1976. Chemical/biological relationships relevant to ecological effects of acid rainfall. Water Air Soil Pollut. 7: 461 – 478Google Scholar
  42. Reuss J.O., Johnson D.W. 1986. Acid Deposition and the Acidification of Soils and Waters. Springer-Verlag, New YorkCrossRefGoogle Scholar
  43. Rochelle B.P., Church M.R., David M.B. 1987. Sulfur retention at intensively- studied watersheds in the U.S. Canada. Water Air Soil Pollut. 33: 73 – 83CrossRefGoogle Scholar
  44. Scherbatskoy T., Klein R. 1983. Response of spruce and birch foliage to leaching by acid mists. J. Environ. Qual. 12: 189 – 193CrossRefGoogle Scholar
  45. Sisterson D.L., Bowersox V., Olsen A., Meyers T., Vong R. 1990. Deposition Monitoring: Methods and Results. NAPAP Report 6, In Acidic Deposition: State of Science and Technology. National Acid Precipitation Assessment Program, Washington, D.CGoogle Scholar
  46. Sollins P., Grier C.C., McCorison F.M., Cromack K., Jr., Fogel R., Fredriksen R.L. 1980. The internal element cycles of an old-growth Douglas-fir ecosystem in western Oregon. Ecol. Monogr. 50: 261 – 285CrossRefGoogle Scholar
  47. Stone E.L., Kszystyniak. R. 1977. Conservation of potassium in the Pinus resinosaecosystem. Science 198: 192 – 194PubMedCrossRefGoogle Scholar
  48. Swank W.T., Fitzgerald J.W., Ash J.T. 1984. Microbial transformation of sulfate in forest soils. Science 223: 182 – 184PubMedCrossRefGoogle Scholar
  49. Swank W.T., Waide J.B., Crossley D.A. Jr., Todd R.L. 1981. Insect defoliation enhances nitrate export from forest ecosystems. Oecoligia 51: 297 – 299CrossRefGoogle Scholar
  50. Ulrich B. 1980. Production and consumption of hydrogen ions in the ecosphere. In Hutchinson T.C., Havas M. (eds.) Effects of Acid Precipitation on Terrestrial Ecosystems. Plenum Press, New York, pp. 255 – 282Google Scholar
  51. Ungs M.J., Boersma L., Yingjajaval S., Klock G.O. 1985. Users Manual for OR- NATURE, the Numerical Analysis of Transport of Water and Solutes Through Soil and PlantsGoogle Scholar
  52. Van Breemen N., Mulder J., Van Grinsven J.J.M. 1987. Impacts of atmospheric deposition on woodland soils in the netherlands: II. Nitrogen transformations. Soil Sci. Soc. Am. J. 51: 1634 – 1640Google Scholar
  53. Van Miegroet H., Cole D.W. 1984. The impact of nitrification on soil acidification and cation leaching in red alder ecosystem. J. Environ. Qual. 13: 586 – 590CrossRefGoogle Scholar
  54. Van Miegroet, H., Cole D.W., Homann P.S. 1989. The effect of alder forest cover and alder forest conversion on site fertility and productivity. In Gessel S.P., Lacate D.S., Weetman G. F., Powers R.F (eds) Sustained Productivity of Forest Soils, Proceedings of the 7th North American Forest Soils Conference. University of British Columbia, Faculty of Forestry Publication, Vancouver, B.C., Canada, pp. 333 – 354Google Scholar
  55. Vitousek P.M., Melillo J.M. 1979. Nitrate losses from disturbed forests: patterns and mechanisms. For. Sci. 25: 605619Google Scholar
  56. Wood T., Bormann F.H. 1974. The effects of an artificial acid mist upon the growth of Betula alleghaniensis. Environ. Pollut. 7: 259 – 268CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • D. W. Johnson
  • S. E. Lindberg

There are no affiliations available

Personalised recommendations