Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 91))

Abstract

Elements such as Ca, Mg, and K, which are required for plant growth, are important components of the nutrient cycle in forested ecosystems, and by far the largest store of these elements in North American and European forests is within the minerals constituting the forest soil. Although external inputs from the atmosphere in both the dissolved and particulate load can provide a portion of these elements to a growing forest, the ultimate source of most inorganic elemental nutrients is provided through cation exchange and mineral weathering reactions that take place in the soil profile. Mineral inventories and determinations of the physical characteristics, mineralogy and chemistry of soil components, and mineral weathering reactions that occur in soils must be an integral part of any study that attempts to document the nutrient status of a forested ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • APHA (American Public Health Association). 1981. Standard Methods for Examinations of Water and Wastewater, 15th Ed. American Public Health Association, Washington, D.C

    Google Scholar 

  • April R.H., Hluchy M.M., Newton R.M. 1986. The nature of vermiculite in Adirondack soils and till. Clays Clay Minerals 34 (5): 549 – 556

    Article  CAS  Google Scholar 

  • April R., Keller D. 1990. Mineralogy of the rhizosphere in forest soils of the eastern United States. Biogeochemistry 9: 1 – 18

    Article  Google Scholar 

  • Arnott H.J. 1982. Three systems of biomineralization in plants with comments on the associated organic matrix. In Nancollas G.H. (ed.) Biological Mineralization and Demineralization, Dahlem Konferenzen, Berlin, Heidelberg. New York, Springer-Verlag, pp. 199 – 218

    Google Scholar 

  • Barshad I. 1964. Chemistry of soil development. In Bear F.E. (ed.) Chemistry of the Soil. Reinhold, New York, pp. 1 – 70

    Google Scholar 

  • Berner R.A., Holdren G.R. Jr. 1979. Mechanism of feldspar weathering—II. Observations of feldspar from soils. Geochim. Cosmochim. Acta 43: pp. 1173 – 1186

    CAS  Google Scholar 

  • Berner R.A., Schott J. 1982. Mechanism of pyroxene and amphibole weathering— II. Observations of soil grains. Am. J. Sci. 282: 1214 – 1231

    Article  CAS  Google Scholar 

  • Brindley G.W., Zalba P.E., Bethke C.M. 1983. Hydrobiotite, a regular 1:1 inter- stratification of biotite and vermiculite layers. Am. Miner. 68: 420 – 425

    CAS  Google Scholar 

  • Brown G. 1980. Associated minerals. In Brindley G.W., Brown G. (eds.) Crystal Structures of Clay Minerals and Their X-Ray Identification. Mineralogical Society, London, pp. 361 – 411

    Google Scholar 

  • Brown G., Brindley G.W. 1980. X-ray diffraction procedures for clay mineral identification: in Brindley G.W., Brown G. (eds.) Crystal Structures of Clay Minerals and their X-ray Identification, Mineralogical Society, London, pp. 305 – 361

    Google Scholar 

  • Cockcroft B., Barley K.P., Greacen E.L. 1969. The penetration of clays by fine probes and root tips. Aust. J. Soil Res. 7: 333 – 348

    Article  Google Scholar 

  • Cronan C.S. 1985. Chemical weathering and solution chemistry in acid forest soils: differential influence of soil type, biotic processes, and H+ deposition. In Drever J.I. (ed.) The Chemistry of Weathering. D. Reidel, Dordrecht, Holland, pp. 175 – 195

    Google Scholar 

  • Cronan C.S., Kelly J.M., Schofield C.L., Goldstein R.A. 1987. Aluminum geochemistry and tree toxicity in forests exposed to acidic deposition. In Proceedings of the International Conference on Acid Rain, Sept. 1–3, 1987, Lisbon, Portugal

    Google Scholar 

  • Curl E.A., Truelove B. 1986. The Rhizosphere. Springer-Verlag, Berlin-Heidelberg

    Google Scholar 

  • Dahlgren R.A., McAvoy D.C., Driscoll C.T. 1990. Acidification and recovery of a spodosol Bs horizon from acidic deposition. Environ. Sci. Technol. 24, pp. 531 – 537

    Article  CAS  Google Scholar 

  • Douglas L.A. 1977. Vermiculites. In Dixon J.B., Weed S.B. (eds.) Minerals in Soil Environments. Soil Science Society of America, Madison, Wisconsin, pp. 259 – 292

    Google Scholar 

  • Folk R.L. 1968. Petrology of Sedimentary Rocks. Hemphills, Austin

    Google Scholar 

  • Goldich S.S. 1938. A study in rock weathering, J. Geol. 46: 17 – 58

    Article  CAS  Google Scholar 

  • Graustein W.C., Cromack K., Sollins P. 1977. Calcium oxalate: occurrence in soils and effect on nutrient and geochemical cycles. Science 198: 1252 – 1254

    Article  PubMed  CAS  Google Scholar 

  • Huttermann A., Ulrich B. 1984. Solid phase-solution-root interactions in soils subjected to acid deposition. Philos. Trans. R. Soc. London Ser. B 305: 353 – 368

    Article  Google Scholar 

  • Keller D.M. 1988. The Chemistry and Mineralogy of Forest and Rhizosphere Soils in the Eastern United States. M.A. Thesis, Colgate University, Hamilton, New York

    Google Scholar 

  • Lund Z.F. 1965. A technique for making thin sections of soil with roots in place. Proc. Soil Sci. Soc. Am. 29: 633 – 635

    Article  Google Scholar 

  • Mortland M.M., Lawton K., Uehara G. 1956. Alteration of biotite to vermiculite by plant growth. Soil Sci. 82: 477 – 481

    Article  CAS  Google Scholar 

  • Nye P.H., Tinker P.B. 1977. Solute Movement in the Soil-Root System. University of California Press, Berkley and Los Angeles

    Google Scholar 

  • Pettijohn F.J. 1941. Persistence of heavy minerals and geologic age. J. Geol. 49: 610 – 625

    Article  CAS  Google Scholar 

  • Shortle W.C., Smith K.T. 1988. Aluminum-induced calcium deficiency syndrome in declining red spruce, Science 240: 1017 – 1018

    Article  PubMed  CAS  Google Scholar 

  • Spyridakis D.E., Chesters G., Wilde S.A. 1967. Kaolinization of biotite as a result of coniferous and deciduous seedling growth. Proc. Soil Sci. Soc. Am. 31: 203 – 210

    Article  CAS  Google Scholar 

  • Tepper H.B., Schaedle M. 1987. Patterns and processes of aluminum uptake and transport. In Proceedings of the International Conference on Acid Rain, Sept. 1–3, 1987, Lisbon, Portugal

    Google Scholar 

  • Velbel M.A. 1984. Rate controls during the natural weathering of almandine garnet. Geology 12: 631 – 634

    Article  CAS  Google Scholar 

  • Walker G.F. 1975. Vermiculites. In Soil Components, Vol. 2: Inorganic Components. Springer-Verlag, New York: 155 – 189

    Google Scholar 

  • Wilding L.P., Smeck N.E., Drees L.R. 1977. Silica in soils: quartz, cristobalite, tridymite, and opal. In Dixon J.B., Weed S.B. (eds.) Minerals in Soil Environments, Soil Sci. Soc. Am., Madison, Wisconsin, pp. 471 – 553

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

April, R., Newton, R. (1992). Mineralogy and Mineral Weathering. In: Johnson, D.W., Lindberg, S.E. (eds) Atmospheric Deposition and Forest Nutrient Cycling. Ecological Studies, vol 91. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2806-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2806-6_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97632-7

  • Online ISBN: 978-1-4612-2806-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics