Changes in Plant Ecophysiology Across a Central European Hedgerow Ecotone

  • Manfred Küppers
Part of the Ecological Studies book series (ECOLSTUD, volume 92)


In past decades, ecological research often concentrated on processes and patterns of homogenous ecological systems. This research produced important estimates of primary production, standing crop, nutrient cycling (e.g., Larcher 1980, Lange et al. 1983), vegetation processes (e.g., Harper 1977, Grime 1979), and classifications of vegetational composition (e.g., Braun-Blanquet 1964, Ellenberg 1978, Walter and Breckle 1986). Transition zones between relatively homogenous systems have often been neglected due to the perception that their importance is minimal because of the small ecosystem area they represent (Weinstein, Chapter 19, this volume). The unique characteristcs of boundary areas, however, have long been recognized by some ecologists (see van der Maarel 1976, di Castri et al. 1988). Clements (1905) introduced the term ecotone, referring to the tension supposedly manifested to underly these zones. For example, plants growing in such zones often show specific stress symptoms or adaptations (e.g., Tranquillini 1979; Küppers 1987; Slatyer and Noble, Chapter 17, this volume). Because of their transitional characteristics, some ecotones may be sensitive to external disturbances (Hansen et al. 1988). Therefore, at a time when global atmospheric changes are the focus of increasing attention (Schneider 1987), the lack of systematic information on ecotones becomes evident.


Carbon Balance Fallow Land Carbon Gain Crown Formation Forest Border 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bazzaz FA (1979) The physiological ecology of plant succession. Ann Rev Ecol and Systematics 10:351–371CrossRefGoogle Scholar
  2. Bazzaz FA, Pickett STA (1980) Physiological ecology of tropical succession: a comparative review. Ann Rev Ecol and Systematics 11:287–310CrossRefGoogle Scholar
  3. Beyschlag W, Lange OL, Tenhunen JD (1987) Photosynthesis and water relations of the mediterranean sclerophyll Arbutus unedo L. throughout the year at a site in Portugal. II. characteristic gas exchange parameters of CO2 uptake and transpiration. Flora 179:399–420Google Scholar
  4. Bierhals E, Gekle L, Hard G, Nohl W (1976) Brachflächen in der Landschaft: Vegetationsentwicklung, Auswirkungen auf Landschaftshaushalt und Land-Schaftserlebnis, Pflegeverfahren. Publisher Kuratorium für Technik und Bauwesen in der Landwirtschaft. Darmstadt, 195pGoogle Scholar
  5. Bloom AJ, Chapin FS, III, Mooney HA (1985) Resource limitation in plants: an economic analogy. Ann Rev Ecol and Systematics 16:363–392Google Scholar
  6. Brahe P (1974) Klimatische Auswirkungen von Gehölzen auf umbauten Stadtplätzen. Das Gartenamt 1974:61–70Google Scholar
  7. Braun-Blanquet J (1964) Pflanzensoziologie. Vienna, Austria, 865pGoogle Scholar
  8. Clements FE (1905) Research Methods in Ecology. Lincoln, Nebraska, 334pGoogle Scholar
  9. Conroy JP, Küppers M, Küppers B, Virgona J, Barlow EWR (1988) The influence of CO2 enrichment, phosphorus deficiency and water stress on the growth, conductance and water use of Pinus radiata D. Don. Plant, Cell and Envir 11:91–98Google Scholar
  10. Davis SD, Mooney HA (1985) Comparative water relations of adjacent California shrub and grassland communities. Oecologia 66:522–529CrossRefGoogle Scholar
  11. di Castri F, Hansen AJ, Holland MM (1988) A new look at ecotones: emerging international projects on landscape boundaries. Biol Intl special Issue AJH 17Google Scholar
  12. Dierschke H (1974) Saumgesellschaften im Vegetations- und Standortsgefälle an Waldrändern. Scripta Geobotanica, Göttingen, Germany, 264pGoogle Scholar
  13. Dobson A, Jolly A, Rubenstein D (1989) The greenhouse effect and biological diversity. TREE 4:64–68Google Scholar
  14. Dowdeswell WH (1987) Hedgerows and Verges. Allen and Unwin, Boston, 190pGoogle Scholar
  15. Ellenberg H (1978) Vegetation Mitteleuropas mit den Alpen. Ullmer, Stuttgart, Germany, 981pGoogle Scholar
  16. Evans JR, von Caemmerer S, Adams WW III (1988) Ecology of photosynthesis in sun and shade. CSIRO, Melbourne, Australia, 358pGoogle Scholar
  17. Fagerström T, Larsson S, Tenow O (1987) On optimal defence in plants. Funct Ecol 1:73–81CrossRefGoogle Scholar
  18. Flemming G (1964) Das Klima an Waldbestandsrändern. Abhandlungen des Meteorologischen und Hydrologischen Dienstes der DDR 9(71), BerlinGoogle Scholar
  19. Fuchs M, Schulze E-D, Fuchs MI (1977) Spatial distribution of photosynthetic capacity and performance in a mature spruce forest of Northern Germany. II. climatic control of carbon dioxide uptake. Oecologia 29:329–340CrossRefGoogle Scholar
  20. Givnish TJ (1986) On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, England, 717pGoogle Scholar
  21. Gries C, Lösch R, Kappen L (1987) Untersuchungen zum pflanzlichen Wasserhaushalt von Corylus avellana in einer holsteinischen Wallhecke. Verhandlungen der Gesellschaft für Ökologie 16:227–230Google Scholar
  22. Grime JP (1979) Plant Strategies and Vegetation Processes. Wiley, New York, 222pGoogle Scholar
  23. Gulmon SL, Mooney HA (1986) Costs of defense and their effects on plant productivity. In Givnish TJ (ed) On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, England, pp 681–698Google Scholar
  24. Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical Trees and Forests: An Architectural Analysis. Springer-Verlag, BerlinGoogle Scholar
  25. Hansen AJ, di Castri F, Naiman RJ (1988) Ecotones: what and why? In di Castri F, Hansen AJ, Holland MM (eds) A New Look at Ecotones. vol. 17. Biology International, 9–46Google Scholar
  26. Harper JL (1977) Population Biology of Plants. Academic Press, New YorkGoogle Scholar
  27. Harper JL, Rosen BR, White J (1986) The growth and form of modular organisms. Philos Trans Royal Soc London B 313:1–250Google Scholar
  28. Horn HS (1974) The ecology of secondary succession. Ann Rev Ecol and Systematics 5:25–37CrossRefGoogle Scholar
  29. Jakucs P (1969) Die Sproßkolonien und ihre Bedeutung in der dynamischen Vegetationsentwicklung (Polycormonsukzession). Acta Botanica Croatica (Zagreb) 28:161–170Google Scholar
  30. Koike T (1987) Photosynthesis and expansion in leaves of early, mid and late successional tree species, birch, ash and maple. Photosynthetica 21:503–508Google Scholar
  31. Koike T, Sakagami Y, Fujimura Y (1986) Characteristics of the leaf dynamics and the photosynthesis of the seedlings and saplings of Betula maximowicziana and Fraxinus mandshurica var. japonica in Hokkaido, Japan. In Fujimori T, Whitehead D (eds) Proceedings of the Conference on Crown and Canopy Structure in Relation to Productivity. Forestry and Forest Products Research Institute, Ibaraki, Japan, pp 395–408Google Scholar
  32. Kriebitzsch W-U (1987) Der Einfluß von Klimafaktoren auf den CO2—und H2O— Gaswechsel von verschiedenen Krautschichtpflanzen in einem submontanen Kalkbuchenwald bei Göttingen. Habilitation-Thesis, University of Göttingen, GermanyGoogle Scholar
  33. Künstle E, Mitscherlich G (1977) Photosynthese, Transpiration und Atmung in einem Mischbestand im Schwarzwald. IV. Bilanz. Allgemeine Forst—und Jagdzeitung 148:227–239Google Scholar
  34. Küppers M (1984a) Carbon relations and competition between woody species in a Central European hedgerow. I. Photosynthetic characteristics. Oecologia 64: 332–343CrossRefGoogle Scholar
  35. Küppers M (1984b) Carbon relations and competition between woody species in a Central European hedgerow. II. Stomatal responses, water use, and hydraulic conductivity in the root/leaf pathway. Oecologia 64:344–354CrossRefGoogle Scholar
  36. Küppers M (1984c) Carbon relations and competition between woody species in a Central European hedgerow. III. Carbon and water balance on the leaf level. Oecologia 65:94–100CrossRefGoogle Scholar
  37. Küppers M (1984d) Kohlenstoffhaushalt, Wasserhaushalt, Wachstum und Wuchsform von Holzgewächsen im Konkurrenzgefüge eines Heckenstandortes. 10–102 In Schulze E-D, Reif A, Küppers M (eds) Die pflanzenökologische Bedeutung und Bewertung von Hecken. Berichte der Akademie für Naturschutz und Landschaftspflege, Beiheft 3(1), Laufen/Salzach, GermanyGoogle Scholar
  38. Küppers M (1985) Carbon relations and competition between woody species in a Central European hedgerow. IV. Growth form and partitioning. Oecologia 66:343–352CrossRefGoogle Scholar
  39. Küppers M (1987) Hecken: Ein Modellfall für die Partnerschaft von Physiologie und Morphologie bei der pflanzlichen Produktion in Konkurrenzsituationen. Naturwissenschaften 74:536–547CrossRefGoogle Scholar
  40. Küppers M (1989a) Hecken und Flurgehölze—Paradeobjekte für produktions— und populationsbiologische Untersuchungen an Holzgewächsen. Verhandlungen der Gesellschaft für Ökologie 18:689–700Google Scholar
  41. Küppers M (1989b) Ecological significance of above-ground architectural patterns in woody plants: a question of cost-benefit relationships. Trends in Ecol and Evol 4:375–379CrossRefGoogle Scholar
  42. Küppers M, Koch G, Mooney HA (1988) Compensating effects to growth of changes in dry matter allocation in response to variation in photosynthetic characteristics induced by photoperiod, light and nitrogen. Austr J Plant Physiol 15:287–298CrossRefGoogle Scholar
  43. Lange OL, Nobel PS, Osmond CB, Ziegler H (1983) Physiological Plant Ecology Vol. 4. Ecosystem Processes: Mineral Cycling, Productivity, and Man’s Influence. Springer-Ver lag, New YorkGoogle Scholar
  44. Larcher W (1980) Physiological Plant Ecology. Springer-Verlag, New YorkGoogle Scholar
  45. Laufener Seminarbeiträge (1982) Akademie für Naturschutz und Landschaftspflege. Laufen/Salzach, GermanyGoogle Scholar
  46. Linder S, Axelsson B (1982) Changes in carbon uptake and allocation patterns as a result of irrigation and fertilization in a young Pinus sylvestris stand. In Waring RH (ed) Carbon Uptake and Allocation in Subalpine Ecosystems as a Key to Management. Forest Research Laboratory, Oregon State University, CorvallisGoogle Scholar
  47. Lösch R (1989) Plant water relations. Progr in Botany 50:27–50Google Scholar
  48. Matyssek R (1985) Der Kohlenstoff-, Wasser- und Nährstoffhaushalt der wechselgrünen und immergrünen Koniferen Lärche, Fichte, Kiefer. Doctoral Thesis, University of BayreuthGoogle Scholar
  49. Matyssek R, Schulze E-D (1988) Carbon uptake and respiration in above-ground parts of a Larix decidua × leptolepis tree. Trees 2:233–241CrossRefGoogle Scholar
  50. McCree KJ, Silsbury JM (1978) Growth and maintenance requirements of subterranean clover. Crop Sci 25:53–58Google Scholar
  51. Medina E (1984) Nutrient balance and physiological processes at the leaf level. In Medina E, Mooney HA, Vazquez-Yanes C (eds) Physiological Ecology of Plants of the Wet Tropics. Junk Publishers, The Hague, the Netherlands, pp 139–154CrossRefGoogle Scholar
  52. Mooney HA (1972) The carbon balance of plants. Ann Rev Ecol and Systematics 3:315–346CrossRefGoogle Scholar
  53. Mooney HA, Küppers M, Koch G, Gorham J, Chu C, Winner WE (1988) Compensating effects to growth of carbon partitioning changes in response to SO2-induced photosynthetic reduction in radish. Oecologia 75:502–506CrossRefGoogle Scholar
  54. Noss RF (1983) A regional landscape approach to maintain diversity. BioScience 33:700–706CrossRefGoogle Scholar
  55. Overdieck D (1989) The effects of preindustrial and predicted future atmospheric CO2 concentration on Lyonia mariana L.D. Don. Funct Ecol 3:569–576CrossRefGoogle Scholar
  56. Pearcy RW, Björkman O, Caldwell MM, Keeley JE, Monson RK, Strain BR (1987). Carbon gain by plants in natural environments. BioScience 37:21–29CrossRefGoogle Scholar
  57. Rauh W (1950) Morphologie der Nutzpflanzen. Quelle & Meyer, Heidelberg, GermanyGoogle Scholar
  58. Reif A (1983) Nordbayerische Heckengesellschaften. Hoppea 41:3–204Google Scholar
  59. Schneider SH (1987) An international program on “global change”: can it endure? an editorial. Clim Change 10:211–218CrossRefGoogle Scholar
  60. Schreiber K-F (1981) Das kontrollierte Brennen von Brachland—Belastungen, Einsatzmöglichkeiten und Grenzen. Eine Zwischenbilanz über feuerökologische Untersuchungen. Angewandte Botanik 55:255–275Google Scholar
  61. Schulze E-D (1970) Der CO2-Gaswechsel der Buche (Fagus silvatica L.) in Abhängigkeit von den Klimafaktoren im Freiland. Flora 159:177–232Google Scholar
  62. Schulze E-D (1972) Die Wirkung von Licht und Temperatur auf den CO2-Gaswechsel verschiedener Lebensformen aus der Krautschicht eines montanen Buchenwaldes. Oecologia 9:235–258CrossRefGoogle Scholar
  63. Schulze E-D, Küppers M, Matyssek R (1986) The roles of carbon balance and branching pattern in the growth of woody species. In Givnish TJ (ed) On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, England, pp 585–602Google Scholar
  64. Schulze E-D, Oren R, Zimmermann R (1987) Die Wirkung von Immissionen auf 30jährige Fichten in mittleren Höhenlagen des Fichtelgebirges auf Phyllit. Allgemeine Forst Zeitschrift 27/28/29:725–730Google Scholar
  65. Schulze E-D, Reif A, Küppers M (1984) Die pflanzenökologische Bedeutung und Bewertung von Hecken. Berichte der Akademie für Naturschutz und Landschaftspflege. Beiheft 3(1), Laufen/Salzach, GermanyGoogle Scholar
  66. Schwabe-Braun A, Wilmanns O (1982) Waldrandstrukturen—Vorbilder für die Gestaltung von Hecken und Kleinstgehölzen. Laufener Seminarbeiträge 5:50–60. Akademie für Naturschutz und Landschaftspflege, Laufen/SalzachGoogle Scholar
  67. Shugart HH (1984) A Theory of Forest Dynamics: The Ecological Implications of Forest Succession Models. Springer-Verlag, New YorkGoogle Scholar
  68. Stickan W (1988) Auswirkungen von Düngungs—und Kalkungsma β nahmen auf den CO2- und H2O-Gaswechsel eines Altbuchenbestandes im Soiling. Verhandlungen der Gesellschaft für Ökologie 17:497–506Google Scholar
  69. Streeter D, Richardson R (1982) Discovering Hedgerows. BBC Books, LondonGoogle Scholar
  70. Tilman D (1988) Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton, New JerseyGoogle Scholar
  71. Tranquillini W (1979) Physiological Ecology of the Alpine Timberline. Springer-Verlag, New YorkGoogle Scholar
  72. Troll W (1935) Vergleichende Morphologie der höheren Pflanzen, vol. 1. Vegetationsorgane. BerlinGoogle Scholar
  73. van der Maarel E (1976) On the establishment of plant community boundaries. Berichte der Deutschen Botanischen Gesellschaft 89:415–443Google Scholar
  74. Walter H, Breckle S-W (1986) Ökologie der Erde (Vol III). Gustav Fischer, Stuttgart, GermanyGoogle Scholar
  75. Weber HE (1975) Das expositionsbedingte Verhalten von Gehölzen und Hinweise für eine standortsgerechte Artenwahl. Natur und Landschaft 50:187–193Google Scholar
  76. Wilmanns O (1975) Junge Änderungen des Kaiserstühler Halbtrockenrasens, vol. 14. Daten und Dokumente zum Umweltschutz, Hohenheim, GermanyGoogle Scholar
  77. Wilmanns O (1983) Lianen in mitteleuropäischen Pflanzengesellschaften und ihre Einnischung. Tuexenia 3:343–358Google Scholar
  78. Zwölfer H (1982) Die Bewertung von Hecken aus tierökologischer Sicht. Laufener Seminarbeiträge 5:130–134Google Scholar
  79. Zwölfer H, Bauer G, Heusinger Stechmann D (1984) Die tierökologische Bedeutung und Bewertung von Hecken. Berichte der Akademie für Naturschutz und Landschaftspflege, Beiheft 3(2), Laufen/SalzachGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • Manfred Küppers

There are no affiliations available

Personalised recommendations