Skip to main content

Central Nervous System: Structure versus Injury and Regeneration versus Recovery

  • Conference paper
Surgery of the Spinal Cord

Part of the book series: Contemporary Perspectives in Neurosurgery ((COPENEU))

Abstract

Since classical times, the structural complexity of the mammalian central nervous system (CNS) has often been claimed to be one of the main obstacles for achieving adequate or clinically useful functional recovery after damage. The reconstruction of a CNS injured region will be aborted by failure in the reorganization of one or another of its multiple fiber-neuronal pathways and hence a complete functional recovery is unattainable. In other words, the CNS of high order animals has lost its regenerating ability, an ability otherwise retained by their peripheral nervous system. However, in recent years, the rigidity of this conception has been softened by an increasing awareness of the extraordinary plasticity of the CNS.1–3 Recent observations indicate that some degree of rearrangement and/or remodeling at both structural and functional levels does occur normally in the CNS, particularly during late prenatal and early postnatal developments.4 Furthermore, the process of learning new tasks implies a CNS capacity to rearrange and/or to modify its basic circuitries in response to environmental influences.5 Therefore, CNS neurons and fibers seem to be able to rearrange the distribution of their different synaptic arrays and thereby to modify their functional activity and spatial interrelationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Eidelberg E, Stein DG. Functional recovery after lesions of the nervous system. Neurosci Res Prog Bull. 1974; 12: 189 - 303.

    Google Scholar 

  2. Stein DG, Rosen JJ, Butters N. Plasticity and Recovery of Function in the Central Nervous System. New York: Academic Press; 1974.

    Google Scholar 

  3. Finger S. Recovery from Brain Damage, Research and Theory. New York: Plenum Press; 1978.

    Google Scholar 

  4. Gaze RM, Keating MJ. Development and regeneration in the nervous system. Br Med Bull. 1974; 30: 105 - 189.

    Google Scholar 

  5. Brodai A. Neurological Anatomy, in Relation to Clinical Medicine. Oxford: Oxford University Press; 1981: 38 - 45.

    Google Scholar 

  6. Liu C-N, Chambers WW. Intraspinal sprouting of dorsal root axons. Arch Neurol Psychiatry. 1958; 79: 46 - 61.

    CAS  Google Scholar 

  7. Murray M, Goldberger ME. Restitution of function and collateral sprouting in the cat spinal cord: partially hemisected animal. J Comp Neurol. 1974; 158: 1936.

    Article  Google Scholar 

  8. Illis LS. Experimental model of regeneration in the central nervous system. I. Synaptic changes. Brain. 1973; 96: 47 - 60.

    Article  PubMed  CAS  Google Scholar 

  9. Zimmer J. Long term synaptic reorganization in rat fascia dentata deafferented at adolescent and adult stages: observations with the Timm method. Brain Res. 1974; 76: 336 - 342.

    Article  PubMed  CAS  Google Scholar 

  10. Lynch GB, Stanfield B, Parks T, Cotman CW. Evidence for selected axonal growth in the dentate gyrus of the rat. Brain Res. 1974; 69: 1 - 11.

    Article  PubMed  CAS  Google Scholar 

  11. Raisman G, Field PM. A qualitative investigation of the development of collateral reinnervation after partial deafferentation of the septal nuclei. Brain Res. 1973; 50: 241 - 264.

    Article  PubMed  CAS  Google Scholar 

  12. Isaacson RL. Experimental brain lesions and memory. In: Rosenzweig, Bennet EL, eds. Neural Mechanisms of Learning and Memory. Cambridge, Boston: MIT Press; 1976: 521 - 543.

    Google Scholar 

  13. Blacemore C. Development of functional connections in the mammalian visual system. Br Med Bull. 1974; 30: 152 - 156.

    Google Scholar 

  14. Wall PD. Mechanisms of plasticity of connections following damage to the adult mammalian nervous system. In: Bach-y-Rita P, ed. Recovery of Function. Theoretical Considerations for Brain Injury Rehabilitation. Huber: Bern; 1980: 91 - 105.

    Google Scholar 

  15. Gross HM, Simanyi M. Porencephaly. Congenital malformations of the Brain and the Skull. In: Vinken PS, Bruyn GW, eds. Handbook of Clinical Neurology. Elsevier, North Holland Publ; 1977: 337 - 361.

    Google Scholar 

  16. Barth PG. Disorders of neuronal migration. Can J Neurol Sci. 1987; 14: 1 - 16.

    PubMed  CAS  Google Scholar 

  17. Marin-Padilla M. Prenatal and early postnatal ontogenesis of the human motor cortex. A Golgi study. I. The sequential development of the cortical layers. Brain Res. 1970; 23: 167 - 183.

    Article  PubMed  CAS  Google Scholar 

  18. Brodai A. Neurological Anatomy in Relation to Clinical Medicine. 3rd ed. Oxford: Oxford University Press; 1981: 817 - 845.

    Google Scholar 

  19. Marin-Padilla M. Prenatal and early postnatal ontogenesis of the human motor cortex. A Golgi study. II. The Basket-Pyramidal system. Brain Res. 1970; 23: 185 - 191.

    Article  PubMed  CAS  Google Scholar 

  20. Marin-Padilla M. Number and distribution of the apical dendritic spines of layer V pyramidal neurons in man. J Comp Neurol. 1967; 131: 475 - 490.

    Article  PubMed  CAS  Google Scholar 

  21. Somogyi P, Cowey A. Double bouquet cells. In: Peter A, Jones EG, eds. Cerebral Cortex. vol I. New York: Plenum Press; 1984: 337 - 361.

    Google Scholar 

  22. Valverde F. Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp. Brain Res. 1968;3:337–352. Structural changes in the area striata of the mouse after enucleation. Exp. Brain Res. 1968; 5: 274 - 292.

    Article  PubMed  CAS  Google Scholar 

  23. Globus A, Scheibel AB. Loss of dendritic spines as an index of pre-synaptic terminal patterns. Nature. 1966; 212: 463 - 465.

    Article  PubMed  CAS  Google Scholar 

  24. Marin-Padilla M, Stibitz GR, Almy CP, Brown HN. Spine distribution of the layer V pyramidal cell in man: a cortical model. Brain Res. 1969; 12: 493 - 496.

    Article  PubMed  CAS  Google Scholar 

  25. Marin-Padilla M. Structural abnormalities of the cerebral cortex in human chromosomal aberrations. A Golgi study. Brain Res. 1972; 44: 625 - 629.

    Article  PubMed  CAS  Google Scholar 

  26. Marin-Padilla M. Structural organization of the cerebral cortex (motor area) in human chromosomal aberrations. A Golgi study. I. D (13–15) trisomy, Patau syndrome. Brain Res. 1974; 66: 375 - 391.

    Article  Google Scholar 

  27. Valverde F, Esteban ME. Peristriate cortex of the mouse: Location and effects of enucleation. Brain Res. 1968; 9: 145 - 148.

    Article  PubMed  CAS  Google Scholar 

  28. Globus A, Scheibel AB. The effects of visual deprivation on cortical neurons. A Golgi study. Exp Neurol. 1967; 19: 331 - 345.

    Article  PubMed  CAS  Google Scholar 

  29. Cajal S Ramóny. Histologie du Systeme Nerveux de L’Homme et des Vertebres. Paris: Maloine; 1911: 519 - 598.

    Google Scholar 

  30. Peters A, Proskaner CC, Ribak CE. Chandelier cells in the visual cortex. J Comp Neurol. 1982; 206: 397 - 416.

    Article  PubMed  CAS  Google Scholar 

  31. Marin-Padilla M. Origin of the pericellular baskets of the pyramidal cells of the human motor cortex. Brain Res. 1969; 14: 633 - 646.

    Article  PubMed  CAS  Google Scholar 

  32. Marin-Padilla M, Stibitz G. Three-dimensional reconstruction of the baskets of the human motor cortex. Brain Res. 1974; 70: 511 - 514.

    Article  PubMed  CAS  Google Scholar 

  33. Marin-Padilla M. The chandelier cell of the human visual cortex: a Golgi study. J Comp Neurol. 1987; 256: 61 - 70.

    Article  PubMed  CAS  Google Scholar 

  34. Somogyi P, Freund TF, Cowey A. The axo-axonic interneurons in the cerebral cortex of the cat, rat, and monkey. Neuroscience. 1982; 7: 2577 - 2607.

    Article  PubMed  CAS  Google Scholar 

  35. Peters A. Chandelier cells. In: Peters A, Jones EG, eds. Cerebral Cortex. vol. I. New York: Plenum Press; 1984: 361 - 380.

    Google Scholar 

  36. Riback CE. Morphological, biochemical and immunocytochemical changes of the cortical GABAergic system in epileptic foci. In: Ward AA, Penry JK, Purpura D, eds. Epilepsy. New York: Raven Press; 1983: 103 - 130.

    Google Scholar 

  37. Marin-Padilla M. Unpublished personal observation.

    Google Scholar 

  38. Feldman ML. Morphology of the neocortical pyramidal neurons. In: Peters A, Jones EG, eds. Cerebral Cortex. vol. I. New York: Plenum Press; 1984: 123 - 201.

    Google Scholar 

  39. Cajal S Ramón y; May RM, trans. Degeneration and Regeneration of the Nervous System. London: Hafner Publishing Co; 1968: 631 - 677.

    Google Scholar 

  40. Meldrum BS, Corsellis JAN. Epilepsy. In: Huma Adams J, Corsellis JAN, eds. Greenfield’s Neuropathology. New York: John Wiley and Sons; 1984: 921 - 950.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Marin-Padilla, M. (1992). Central Nervous System: Structure versus Injury and Regeneration versus Recovery. In: Holtzman, R.N.N., Stein, B.M. (eds) Surgery of the Spinal Cord. Contemporary Perspectives in Neurosurgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2798-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2798-4_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7675-3

  • Online ISBN: 978-1-4612-2798-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics