Skip to main content

The Vortex-Lattice Structure of Turbulent-Shear Flows

  • Chapter
Book cover Studies in Turbulence
  • 464 Accesses

Abstract

We perform numerical experiments on natural and controlled transition in two types of shear flows: a periodic ulated flat plate. In the mixing-layincompressible mixing layer, and a supersonic (Mach 5) boundary layer developing on an inser case, a direct-numerical simulation is developed, starting with a hyperbolic-tangent velocity profile. When the flow is forced initially by a small 3D isotropic residual turbulence (natural transition), it develops a vortex-lattice structure of the Kelvin-Helmholtz billows: this subharmonic secondary instability, corresponding to the helical-pairing instability studied by Pierrehumbert and Widnall (J. Fluid Mech., 114, pp 59-82, 1982), is in our calculation more amplified than the two-dimensional pairing. This is at variance with the predictions of the secondary instability theory, and yields a highly three- dimensional structure of the flow. A quasi two-dimensional perturbation (controlled transition), on the contrary, leads to longitudinal hairpin vortices strained between quasi two-dimensional billows, as found in the laboratory experiments of Bernal and Roshko (J. Fluid Mech., 170, pp 499-525, 1986). The compressible turbulent boundary layer at Mach 5 is numerically out of reach if one restricts to direct-numerical simulations. We have developed a large-eddy simulation using eddy-coefficients based on the second-order structure function of the velocity. This allows us to have a controlled-transition experiment, where the flow is forced upstream by a set of two-dimensional waves (second mode), to which a small 3D. Unitè Mixte de recherché CNRS, Institut National Polytechnique de Grenoble, Universitè Joseph Fourier. This work was supported by D.R.E.T. under contract 88/150, by CNES/Avions Marcel Dassault (HERMES European Space Programme), and by GDR-CNRSMécanique des Fluides Numérique. Part of the calculations were done on a grant of the Centre de Calcul Vectoriel pour la Recherche.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernal, L.P. and Roshko, A., 1986, “Streamwise vortex structure in plane mixing layers”, J. Fluid Mech., 170, pp 499 – 525.

    Article  ADS  Google Scholar 

  • Breidenthal, R., 1981, “Structure in turbulent mixing layers and wakes using a chemical reaction”, J. Fluid Mech., 109, pp 1 – 24.

    Article  ADS  Google Scholar 

  • Browand, F.K. and Troutt, T.R., 1980, “A note on spanwise structure in the two-dimensional mixing layer” J. Fluid Mech., 93, pp 325 – 336.

    Google Scholar 

  • Browand, F.K., Ho, C.M., 1983, “The mixing layer: an example of quasi two-dimensional turbulence”, inTwo-dimensional turbulence, J. Mec. Theor. Appl., Suppl., R. Moreau ed., pp 99–120

    Google Scholar 

  • Chorin, A.J., 1986, “Turbulence and vortex stretching on a lattice”, Comm. Pure and Appl. Maths, XXXIX, pp S47–S65.

    Article  MathSciNet  Google Scholar 

  • Comte, P., 1989, Etude par simulation numérique de la transition a la turbulence en ecoulement cisaillé libre, These de l’ Institut National Poly- technique de Grenoble.

    Google Scholar 

  • Comte, P., Lee, S.S., Cabot, W. and Moin, P., 1990, “A subgrid-scale model based upon the second-order velocity structure function”, Proc. Summer program 1990, Center for Turbulence Research, Stanford, California.

    Google Scholar 

  • Fiedler, H.,1990, private communication.

    Google Scholar 

  • Fouillet, Y.,1990, private communication.

    Google Scholar 

  • Gottlieb, D., Turkel, E., 1976, “Dissipative two-four methods for time-dependent problems”, Math. Comp., 30, pp 703–723

    Article  MathSciNet  MATH  Google Scholar 

  • Kraichnan, R.H., 1976, “Eddy viscosity in two and three dimensions”, J. Atmos. Sci., 33, pp 1521–1536

    Article  ADS  Google Scholar 

  • Lasheras, J.C., Choi, H., 1988, “Three-dimensional instability of a plane free shear layer: an experimental study of the formation and evolution of streamwise vortices”, J. Fluid Mech., 189, pp 53–86

    Article  ADS  Google Scholar 

  • Lesieur, M., 1990, Turbulence in Fluids(second revised edition), Kluwer Publishers, Dordrecht.

    Google Scholar 

  • Lesieur, M., Staquet, C., Le Roy, P., Comte, P., 1988, “The mixing layer and its coherence examined from the point of view of two- dimensional turbulence”, J. Fluid Mech., 192, pp 511–534

    Article  MathSciNet  ADS  Google Scholar 

  • Leslie, D.C., Quarini, G.L., 1979, “The application of turbulence theory to the formulation of subgrid modelling procedures”, J. Fluid Mech., 91, pp 65–91

    Article  ADS  MATH  Google Scholar 

  • Lumley, J.L., 1989, inWither turbulence? Turbulence at the crossroadsSpringer Verlag Lecture Notes in Physics, 357, pp 49–57, J. Lumley, ed

    ADS  Google Scholar 

  • Meiburg, E., 1985, PhD thesis, University of Karlsruhe.

    Google Scholar 

  • Metais, 0., Lesieur, M., 1990, “Spectral large-eddy simulations of isotropic and stably-stratified turbulence”, submitted to J. Fluid Mech.

    Google Scholar 

  • Normand, X., 1990, Transition à la turbulence dans les écoulements sisaillés libres ou pariètaux, Thèse de l’lnstitut National Polytechnique de Grenoble.

    Google Scholar 

  • Normand, X., Lesieur, M., 1990, “Numerical experiments on transition in the compressible boundary layer over an insulated flat plate”, Theor. Comp. Fluid Dynamics, in press.

    Google Scholar 

  • Pierrehumbert, R.T. et Widnall, S.E., 1982, “The two and three- dimensional instabilities of the spatially periodic shear layer”, J. Fluid Mech., 114, pp 59–82

    Article  ADS  MATH  Google Scholar 

  • Silveira Neto, A., Grand, D., Metais, 0., Lesieur, M., 1990, “Large- eddy simulation of the turbulent flow in the downstream region of a backward-facing step”, submitted to Phys. Rev. Letters.

    Google Scholar 

  • Yakhot, V., Orszag, S., 1986, “Renormalization Group (RNG) methods for turbulence closure”, J. Scientific Computing, 1, pp 3–52

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Lesieur, M., Comte, P., Normand, X. (1992). The Vortex-Lattice Structure of Turbulent-Shear Flows. In: Gatski, T.B., Speziale, C.G., Sarkar, S. (eds) Studies in Turbulence. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2792-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2792-2_32

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7672-2

  • Online ISBN: 978-1-4612-2792-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics