Skip to main content

Mach number Effects on Free and Wall Turbulent Structures In Light of Instability Flow Interactions

  • Chapter
Studies in Turbulence

Abstract

Our perception of fluid instabilities and turbulence is largely based on properties of incompressible vorticity distributions ω and the Biot-Savart Law of “instantaneous” induction at distance. In high-speed shear layers it is the distribution of local angular momentum ρω that matters; modified interaction-induction between vortical elements is likely to take place only within relative Mach cones of influence, with acoustic time delay. This and the large mean density stratifications influence strongly instability vortex roll-ups, vortex mergings, and large-scale turbulent structures. Consequences of these observations on transition to turbulence and turbulence energetics are discussed in physical terms. Free shear layers and wall layers may require distinctMmodelling

This work was partially supported under NASA Contract NAS1-18240, while the author was a consultant to High Technology Corporation, Hampton, VA, 23666

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baskin, V. E., 1980, Induction of an arbitrary vortex filament in a gas, Fluid Mech, Soviet Research, 9, p. 51

    MATH  Google Scholar 

  • Bernal, L. P., Roshko, A., 1986, Streamwise vortex structure in plane mixing layers, J. Fluid Mech, 170p. 499

    Article  ADS  Google Scholar 

  • Bradshaw, P., 1977, Compressible turbulent shear layersAnnual Review of Fluid Mech., p. 33

    Google Scholar 

  • Elliott, G. S., Samimy M., 1990, Compressibility effects in free shear layers, Phys. Fluids A, 2, p. 1231

    Article  ADS  Google Scholar 

  • Elliott, G. S., Samimy, M., Reeder, M. F., 1990, Pressure based real-time measurements in compressible free shear layers, AIAA Paper 90–1980

    Google Scholar 

  • Greenough, J. A., Riley, J. J., Soestrino, M., Eberhardt, D. S., 1989, The effects of walls on a compressible mixing layer, AIAA Paper90–0372

    Google Scholar 

  • Gropengiesser, H., 1968, On the stability of free shear layers in compressible flows(in German), PhD thesis, Tech. Univ. of Berlin, also NASA transl. NASA TT F-12786, Feb. 1970

    Google Scholar 

  • Ho, C.-M., Huerre, P., 1984, Perturbed free shear layersReview of Fluid Mechanics, 16p. 365.

    Article  ADS  Google Scholar 

  • Jackson, T. L., Grosch, C. E., 1989, Inviscid spatial stability of a compressible mixing layer, J. Fluid Mech, 208p. 609.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kendall, J. M., 1975, Wind tunnel experiments relating to supersonic and hypersonic boundary-layer transition, AIAA J., 13p. 290.

    Article  ADS  Google Scholar 

  • Kovasznay, L. S. G., Kibens, V., Blackwelder, R. F., 1970, Large-scale motion in the intermittent region of a turbulent boundary layer, J. Fluid Mech, 41, p. 283

    Article  ADS  Google Scholar 

  • Landahl, M. T., 1967, A wave-guide model for turbulent shear flow, J. Fluid Mech, 29p. 441.

    Article  ADS  MATH  Google Scholar 

  • Lee, M. J., Kim, J., Moin, P., 1990, Structure of turbulence at high shear rate, J. Fluid Mech, 216p. 561.

    Article  ADS  Google Scholar 

  • Lele, S., 1989, Direct numerical simulation of compressible shear flows, AIAA Paper 89-0374.

    Google Scholar 

  • Mack, L. M., 1984, Boundary-layer linear stability theorySpecial Course on Stability and Transition on Laminar Flow, AGARD Report No. 709, 3-1.

    Google Scholar 

  • Mack, L. M., 1990, On the inviscid acoustic-mode instability of supersonic shear flowsPart I.Two-dimensional waves, to appear in Theory and Comput. Fluid Dyn., Springer Journal.

    Google Scholar 

  • Metcalfe, R. W., Orszag, S. A., Brachet, M. E., Menon S., Riley, J. J., 1987, Secondary instability of a temporally growing mixing layer, J. Fluid Mech, 184p. 207.

    Article  ADS  MATH  Google Scholar 

  • Morkovin, M. V., 1961, Effects of compressibility on turbulent flows, in Mecanique de la Turbulence, A. Favre, ed. CNRS, Paris, p. 368. Also Gordon and Breach, 1964.

    Google Scholar 

  • Morkovin, M. V., 1987, Transition at hypersonic speedsICASE Interim Report 1.

    Google Scholar 

  • Papamoschou, D., 1989, Structure of the compressible turbulent shear layer, AIAA Paper 89-0126.

    Google Scholar 

  • Papamoschou, D., 1990, Communication paths in the compressible shear layer, AIAA Paper 90-0155.

    Google Scholar 

  • Papamoschou, D., Roshko, A., 1988, The compressible turbulent shear layer: an experimental study, J. Fluid Mech, 197, p. 453.

    Article  ADS  Google Scholar 

  • Ragab, S. A., Sheen, S., 1990, Numerical simulation of a compressible mixing layer, AIAA Paper 90-1669.

    Google Scholar 

  • Robinson, S. K., 1990, A perspective on coherent structures and conceptual models for turbulent boundary-layer physicsAIAA Paper 90-1638.

    Google Scholar 

  • Roshko, A., 1976, Structure of turbulent shear flows: a new look, AIAA J., 14, p. 1347.

    Article  ADS  Google Scholar 

  • Samimy, M., Elliott, G. S., 1990, Effects of compressibility on the characteristics of free shear layers, AIAA J., 28, p. 439.

    Article  ADS  Google Scholar 

  • Sandham, N. D., 1989, A numerical investigation of the compressible mixing layer, PhD Thesis, Mech. Engr., Stanford Univ.

    Google Scholar 

  • Sandham, N. D., Reynolds, W. C., 1989, Some inlet-plane effects on the numerically simulated spatially-developing mixing layers, Proc. Turbulent Shear Flows Symposium No. 6, Springer Verlag

    Google Scholar 

  • Sandham, N. D., Reynolds, W. C., 1990, Compressible mixing layer: linear theory and direct simulation, AIAA J., 28p. 618.

    Article  ADS  Google Scholar 

  • Sigalla, L., Eberhardt, D. S., Greenough, J. A., Riley, J. J., 1990, Numerical simulation of confined, spatially developing mixing layers: comparison to the temporal shear layer, AIAA Paper 90-1462.

    Google Scholar 

  • Smits, A. J., Spina, E. F., Alving, A. E., Smith, R. W., Fernando, E. M., Donovan, J. F., 1990, Acomparison of the turbulence structure of subsonic and supersonic turbulent boundary layers, to appear in Phys. Fluids A.

    Google Scholar 

  • Soestrino, M., 1990, Numerical simulations of instabilities in compressible mixing layers, PhD thesis, Dept. Aero. & Astro., Univ of Washington, Seattle.

    Google Scholar 

  • Soestrino, M., Eberhardt, D. S., Riley, J. J., McMurtry, P. A., 1988, A study ofinviscid supersonic mixing layers using a second-order TVD scheme, AIAA Paper 88-3676 and AIAA J., 27.

    Google Scholar 

  • Spina, E. F., Donovan, J. F., Smits, A. J., 1990, On the structure of supersonic turbulent boundary layers, to appear in J. Fluid Mech.

    Google Scholar 

  • Sreenivasan, K. R., 1988, A unified view of the origin and morphology of the turbulent boundary layer, 26 p. in Proc. Turbulence Management and Relaminarization, Liepmann, H. W., Narasimha, R., editors, Springer Verlag.

    Google Scholar 

  • Tarn, Ch.K.W., Hu, F. Q., 1989a, On the three families of instability waves of high-speed jets, J. Fluid Mech, 201, p. 447.

    Article  ADS  Google Scholar 

  • Tarn, Ch,K.W., Hu, F. Q., 1989b, The instability and acoustic wave modes of supersonic mixing layers inside a rectangular channel, J. Fluid Mech, 203, p. 51.

    Article  ADS  Google Scholar 

  • Thompson, P. A., 1972, Compressible Fluid DynamicsMcGraw-Hill, NY.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Morkovin, M.V. (1992). Mach number Effects on Free and Wall Turbulent Structures In Light of Instability Flow Interactions. In: Gatski, T.B., Speziale, C.G., Sarkar, S. (eds) Studies in Turbulence. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2792-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2792-2_20

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7672-2

  • Online ISBN: 978-1-4612-2792-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics