Mach number Effects on Free and Wall Turbulent Structures In Light of Instability Flow Interactions

  • Mark V. Morkovin


Our perception of fluid instabilities and turbulence is largely based on properties of incompressible vorticity distributions ω and the Biot-Savart Law of “instantaneous” induction at distance. In high-speed shear layers it is the distribution of local angular momentum ρω that matters; modified interaction-induction between vortical elements is likely to take place only within relative Mach cones of influence, with acoustic time delay. This and the large mean density stratifications influence strongly instability vortex roll-ups, vortex mergings, and large-scale turbulent structures. Consequences of these observations on transition to turbulence and turbulence energetics are discussed in physical terms. Free shear layers and wall layers may require distinctMmodelling


Shear Layer Turbulent Boundary Layer Streamwise Vortex Secondary Instability Free Shear Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baskin, V. E., 1980, Induction of an arbitrary vortex filament in a gas, Fluid Mech, Soviet Research, 9, p. 51MATHGoogle Scholar
  2. Bernal, L. P., Roshko, A., 1986, Streamwise vortex structure in plane mixing layers, J. Fluid Mech, 170p. 499ADSCrossRefGoogle Scholar
  3. Bradshaw, P., 1977, Compressible turbulent shear layersAnnual Review of Fluid Mech., p. 33Google Scholar
  4. Elliott, G. S., Samimy M., 1990, Compressibility effects in free shear layers, Phys. Fluids A, 2, p. 1231ADSCrossRefGoogle Scholar
  5. Elliott, G. S., Samimy, M., Reeder, M. F., 1990, Pressure based real-time measurements in compressible free shear layers, AIAA Paper 90–1980Google Scholar
  6. Greenough, J. A., Riley, J. J., Soestrino, M., Eberhardt, D. S., 1989, The effects of walls on a compressible mixing layer, AIAA Paper90–0372Google Scholar
  7. Gropengiesser, H., 1968, On the stability of free shear layers in compressible flows(in German), PhD thesis, Tech. Univ. of Berlin, also NASA transl. NASA TT F-12786, Feb. 1970Google Scholar
  8. Ho, C.-M., Huerre, P., 1984, Perturbed free shear layersReview of Fluid Mechanics, 16p. 365.ADSCrossRefGoogle Scholar
  9. Jackson, T. L., Grosch, C. E., 1989, Inviscid spatial stability of a compressible mixing layer, J. Fluid Mech, 208p. 609.MathSciNetADSMATHCrossRefGoogle Scholar
  10. Kendall, J. M., 1975, Wind tunnel experiments relating to supersonic and hypersonic boundary-layer transition, AIAA J., 13p. 290.ADSCrossRefGoogle Scholar
  11. Kovasznay, L. S. G., Kibens, V., Blackwelder, R. F., 1970, Large-scale motion in the intermittent region of a turbulent boundary layer, J. Fluid Mech, 41, p. 283ADSCrossRefGoogle Scholar
  12. Landahl, M. T., 1967, A wave-guide model for turbulent shear flow, J. Fluid Mech, 29p. 441.ADSMATHCrossRefGoogle Scholar
  13. Lee, M. J., Kim, J., Moin, P., 1990, Structure of turbulence at high shear rate, J. Fluid Mech, 216p. 561.ADSCrossRefGoogle Scholar
  14. Lele, S., 1989, Direct numerical simulation of compressible shear flows, AIAA Paper 89-0374.Google Scholar
  15. Mack, L. M., 1984, Boundary-layer linear stability theorySpecial Course on Stability and Transition on Laminar Flow, AGARD Report No. 709, 3-1.Google Scholar
  16. Mack, L. M., 1990, On the inviscid acoustic-mode instability of supersonic shear flowsPart I.Two-dimensional waves, to appear in Theory and Comput. Fluid Dyn., Springer Journal.Google Scholar
  17. Metcalfe, R. W., Orszag, S. A., Brachet, M. E., Menon S., Riley, J. J., 1987, Secondary instability of a temporally growing mixing layer, J. Fluid Mech, 184p. 207.ADSMATHCrossRefGoogle Scholar
  18. Morkovin, M. V., 1961, Effects of compressibility on turbulent flows, in Mecanique de la Turbulence, A. Favre, ed. CNRS, Paris, p. 368. Also Gordon and Breach, 1964.Google Scholar
  19. Morkovin, M. V., 1987, Transition at hypersonic speedsICASE Interim Report 1.Google Scholar
  20. Papamoschou, D., 1989, Structure of the compressible turbulent shear layer, AIAA Paper 89-0126.Google Scholar
  21. Papamoschou, D., 1990, Communication paths in the compressible shear layer, AIAA Paper 90-0155.Google Scholar
  22. Papamoschou, D., Roshko, A., 1988, The compressible turbulent shear layer: an experimental study, J. Fluid Mech, 197, p. 453.ADSCrossRefGoogle Scholar
  23. Ragab, S. A., Sheen, S., 1990, Numerical simulation of a compressible mixing layer, AIAA Paper 90-1669.Google Scholar
  24. Robinson, S. K., 1990, A perspective on coherent structures and conceptual models for turbulent boundary-layer physicsAIAA Paper 90-1638.Google Scholar
  25. Roshko, A., 1976, Structure of turbulent shear flows: a new look, AIAA J., 14, p. 1347.ADSCrossRefGoogle Scholar
  26. Samimy, M., Elliott, G. S., 1990, Effects of compressibility on the characteristics of free shear layers, AIAA J., 28, p. 439.ADSCrossRefGoogle Scholar
  27. Sandham, N. D., 1989, A numerical investigation of the compressible mixing layer, PhD Thesis, Mech. Engr., Stanford Univ.Google Scholar
  28. Sandham, N. D., Reynolds, W. C., 1989, Some inlet-plane effects on the numerically simulated spatially-developing mixing layers, Proc. Turbulent Shear Flows Symposium No. 6, Springer VerlagGoogle Scholar
  29. Sandham, N. D., Reynolds, W. C., 1990, Compressible mixing layer: linear theory and direct simulation, AIAA J., 28p. 618.ADSCrossRefGoogle Scholar
  30. Sigalla, L., Eberhardt, D. S., Greenough, J. A., Riley, J. J., 1990, Numerical simulation of confined, spatially developing mixing layers: comparison to the temporal shear layer, AIAA Paper 90-1462.Google Scholar
  31. Smits, A. J., Spina, E. F., Alving, A. E., Smith, R. W., Fernando, E. M., Donovan, J. F., 1990, Acomparison of the turbulence structure of subsonic and supersonic turbulent boundary layers, to appear in Phys. Fluids A.Google Scholar
  32. Soestrino, M., 1990, Numerical simulations of instabilities in compressible mixing layers, PhD thesis, Dept. Aero. & Astro., Univ of Washington, Seattle.Google Scholar
  33. Soestrino, M., Eberhardt, D. S., Riley, J. J., McMurtry, P. A., 1988, A study ofinviscid supersonic mixing layers using a second-order TVD scheme, AIAA Paper 88-3676 and AIAA J., 27.Google Scholar
  34. Spina, E. F., Donovan, J. F., Smits, A. J., 1990, On the structure of supersonic turbulent boundary layers, to appear in J. Fluid Mech.Google Scholar
  35. Sreenivasan, K. R., 1988, A unified view of the origin and morphology of the turbulent boundary layer, 26 p. in Proc. Turbulence Management and Relaminarization, Liepmann, H. W., Narasimha, R., editors, Springer Verlag.Google Scholar
  36. Tarn, Ch.K.W., Hu, F. Q., 1989a, On the three families of instability waves of high-speed jets, J. Fluid Mech, 201, p. 447.ADSCrossRefGoogle Scholar
  37. Tarn, Ch,K.W., Hu, F. Q., 1989b, The instability and acoustic wave modes of supersonic mixing layers inside a rectangular channel, J. Fluid Mech, 203, p. 51.ADSCrossRefGoogle Scholar
  38. Thompson, P. A., 1972, Compressible Fluid DynamicsMcGraw-Hill, NY.MATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • Mark V. Morkovin
    • 1
  1. 1.Professor EmeritusIllinois Institute of TechnologyUSA

Personalised recommendations