Skip to main content

Modeling the Dissipation-Rate Equation with the Aid of Direct Simulation Data

  • Chapter

Abstract

The e-budget was computed from the direct simulation data (DNS) of Kim [10] for developed channel flow at Rer = 395. The relative magnitude of the terms in the ∈-equation is shown with the aid of scaling arguments, and the parameter governing this magnitude is established. The modeling of the terms in the equation is then addressed in the context of eddy-viscosity k-∈ models. Some existing models for the sum of all source and sink terms in the ∈-equation are tested against DNS data, and an improved model is proposed on the basis of these data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davydov, B. I., 1961, On the statistical dynamics of an in compressible turbulent fluidDoc. Acad. Nauk SSSR.136, 47–50 (Soviet Physics - Doklady, 6 (1), 10-12, 1961)

    Google Scholar 

  2. Harlow, F. H., Nakayama, R I., 1967, Turbulent transport equationsPhys. Fluids.10, 2323

    Article  ADS  MATH  Google Scholar 

  3. Lumley, J. L.,, 1970, Toward a turbulent constitutive relation. J. Fluid Mech41, 413–434

    Article  ADS  Google Scholar 

  4. Tennekes, H. Lumley, J.L., 1972, A First Course in Turbulence. The MIT Press, Cambridge, Mass

    Google Scholar 

  5. Lumley, J. L., Khajeh-Nouri, B., 1974, Computation of turbulent transportAdv. Geophys.A18, 169–192

    ADS  Google Scholar 

  6. Lumley, J. L., 1978, Computational modeling of turbulent flows. in Advances in Applied Mech.18, editor C. S. Sih, Academic Press, New York, 123–176

    Google Scholar 

  7. Zeman, O., Lumley, J. L., 1979, Buoyancy effects in entraining turbulent boundary layers: a second-order closure studyTurbulent Shear Flows.I, Editors F. Durstet al., Springer, Heidelberg

    Google Scholar 

  8. Launder, B. E., 1986, Low-Reynolds-number turbulence near walls. Report TFD/86/4,UMIST, Manchester, U.K

    Google Scholar 

  9. Kim, J., Moin, P., Moser, R., 1987, Turbulence statististics in fully developed channel flow at low Reynolds numberJ. Fluid Mech.177, 133–166

    Article  ADS  MATH  Google Scholar 

  10. Kim, J., 1990, private communication

    Google Scholar 

  11. Mansour, N. N., Kim, J. K., Moin, P., 1988, Reynolds stress and dissipation rate budgets in a turbulent channel flowJ. Fluid Mech.194, 15–44

    Article  ADS  Google Scholar 

  12. Patel, V.C., Rodi, W., Scheuerer, G., 1985, Turbulence models for near-wall and low- Reynolds-number flows: A review. AIAA J.23(9), 1308–1319

    Article  MathSciNet  ADS  Google Scholar 

  13. Launder, B.E., Sharma, B.I., 1974, Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning diskLetters in Heat and Mass Transfer.1, 131–138

    Article  ADS  Google Scholar 

  14. Lam, C.K.G., Bremhorst, K.A., 1981, Modified form of the k-e model for predicting wall turbulenceJ. Fluids Eng.103, 456–460

    Article  Google Scholar 

  15. Chien, K.-Y., 1982, Predictions of channel and boundary- layer flows with a low-Reynolds- number turbulence model. AIAA J.20, 33–38

    Article  ADS  MATH  Google Scholar 

  16. Rodi, W., 1971, On the equation governing the rate of turbulent energy dissipation. Report TM/TN/A/14, Imperial College of Science and Technology, Dept. of Mech. Eng., London, U.K.

    Google Scholar 

  17. Bardina, J., 1988, Turbulence modeling based on direct simulation of the Navier-Stokes equations. First National Fluid Dynamics Congress, Cincinnati, Ohio, AIAA 88- 3747-CP.

    Google Scholar 

  18. Launder, B.E., Reece, G.J.K., Rodi, W., 1975, Progress in the development of a Reynolds-stress turbulence closureJ. Fluid Mech.68, 537–566

    Article  ADS  MATH  Google Scholar 

  19. Hanjalić, K., Launder, B.E., 1976, Contribution towards a Reynolds-stress closure for low-Reynolds-number turbulenceJ. Fluid Mech.74, 593–610

    Article  ADS  MATH  Google Scholar 

  20. Rodi, W., Mansour, N. N., 1990, Low-Reynolds number k-e modeling with the aid of direct simulation dataProceedings of the Center for Turbulence Research, Summer 1990, Ames research center, Moffett Field, CA 94035

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Rodi, W., Mansour, N.N. (1992). Modeling the Dissipation-Rate Equation with the Aid of Direct Simulation Data. In: Gatski, T.B., Speziale, C.G., Sarkar, S. (eds) Studies in Turbulence. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2792-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2792-2_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7672-2

  • Online ISBN: 978-1-4612-2792-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics