Skip to main content

Observations on the Proper Orthogonal Decomposition

  • Chapter
Studies in Turbulence

Abstract

The Proper Orthogonal Decomposition (P.O.D.), also known as the Karhunen-Loeve expansion, is a procedure for decomposing a stochastic field in an L2 optimal sense. It is used in diverse disciplines from image processing to turbulence. Recently the P.O.D. is receiving much attention as a tool for studying dynamics of systems in infinite dimensional space. This paper reviews the mathematical fundamentals of this theory. Also included are results on the span of the eigenfunction basis, a geometric corollary due to Chebyshev’s inequality and a relation between the P.O.D. symmetry and ergodicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Algazi, V.R. and Sakrison, D.J. (1969). On the optimality of the Karhunen—Loeve expansion, IEEE Trans. Inform. Theory 15 319 – 321.

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, C.A., Davies, J.M. and Schwarz, G.R. (1967). Adaptive data compression, Proc. DEEE 55 267 – 277.

    Google Scholar 

  3. Aubry, N., Holmes, P., Lumley, J.L. & Stone, E. (1988). The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192 115 – 173.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Aubry, N., Lian, W.-Y., Titi, E.S. The P.O.D. in physical problems with symmetry in preparatioa

    Google Scholar 

  5. Bakewell, P. and Lumley, J.L. (1967). Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10 1880 – 1889.

    Article  ADS  Google Scholar 

  6. Berkooz, G. (1990). In Preparation, Preprint.

    Google Scholar 

  7. Berkooz,G., Elezgaray, J., Holmes, P. 1990. In preparation.

    Google Scholar 

  8. Cornfeld, I.P., Fomin, S.V., Sinai, Ya. G. Ergodic Theory. Springer 1982

    MATH  Google Scholar 

  9. Feller, W. An introduction to probability theory and its applications. 1957 Wiley.

    MATH  Google Scholar 

  10. Foias, G, Manley, O., Sinovich, L. 1990 Empirical and Stokes eigenfunctions and the far dissipative turbulent spectrum. Phys. Fluids A 2 (3) pages.

    Article  MathSciNet  Google Scholar 

  11. Herzog, S. 1986. The large scale structure in the near wall region of turbulent pipe flow. Ph.D. Thesis, Cornell University, Ithaca, NY 14853.

    Google Scholar 

  12. Holmes, P., Berkooz, G., Lumley, J.L. 1990. On the unreasonable effectiveness of empirical eigenfiinction in turbulence. Proc. of the Kyoto Congress of Mathematicians.

    Google Scholar 

  13. Karhunen, K. 1946. Zur Spektral theorie stochastischer prozesse, Ann. Acad. Sci. Fennicae Ser. A1, 34.

    Google Scholar 

  14. Knight, B.W. and Sirovich, L. 1986. The eigenfiinction problem in higher dimensions. Exact Results. Proc. Natl. Acad. Sci. USA 83 pp 527 – 530.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Kosambi, D.D. 1943. Statistics in function space, J. Indian Math. Soc. 7, 76 – 88.

    MathSciNet  MATH  Google Scholar 

  16. Loeve, M. 1945. Functions aleatoire de second ordre, Compte Rend. Acad. Sci. (Paris) 220.

    Google Scholar 

  17. Lumley, J.L. 1967. The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence and Radio Wave Propagation (ed. A.M. Yaglom & V.I. Tatorski ) pp 166 – 178, Moscow: Nauka.

    Google Scholar 

  18. Lumley, J.L. 1970. Stochastic Tools in Turbulence. Academic Press.

    MATH  Google Scholar 

  19. Moin, P. and Moser, R.D. 1989. Characteristic-eddy decomposition of turbulence in a channel. J. Fluid Mech. vol. 200 pp. 471 – 506.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Obukhov, A.M. (1954). Statistical description of continuous fields, Trudy Geophys. Int. Aked. Nauk. SSSR, Ser. No. 24 3–42 (in Russian).

    Google Scholar 

  21. Pougachev, V.S. 1953. General theory of the correlations of random functions, Izv. Akad. Nauk. SSSR, Ser. Mat. 17 401–402 (in Russian).

    Google Scholar 

  22. Riesz, F. Nagy, Sz. B. Functional Analysis (Ungar, New York, 1955).

    Google Scholar 

  23. Sirovich, L., 1989. Chaotic dynamics of coherent structures. Physica D 37, 1989, 126 – 145.

    Article  MathSciNet  ADS  Google Scholar 

  24. Teman, R. 1988. Infinite dimensional dynamical systems in mechanics and physics, Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Berkooz, G. (1992). Observations on the Proper Orthogonal Decomposition. In: Gatski, T.B., Speziale, C.G., Sarkar, S. (eds) Studies in Turbulence. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2792-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2792-2_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7672-2

  • Online ISBN: 978-1-4612-2792-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics