Skip to main content

The Evolution of Hearing in Insects as an Adaptation to Predation from Bats

  • Chapter

Abstract

In a volume devoted to the evolutionary biology of hearing it is worth emphasizing that among terrestrial animals, only the vertebrates and insects have evolved specialized receptor systems for hearing. Like other sensory modalities hearing subserves survival behavior of which two stand out: reproductive behavior and predator detection. Hearing mediates both behaviors in a wide variety of vertebrates and insects, and especially among nocturnally active species in both. I will briefly touch on the well-known role of hearing in the reproductive hearing of insects since it is the subject of other chapters in this volume (Michelsen, Chapter 5; Romer, Chapter 6; Lewis, Chapter 7), and I will devote most of this chapter to the evolution of insect hearing in relation to predators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander RD (1962) Evolutionary change in cricket acoustical communication. Evolution 16:443–467.

    Article  Google Scholar 

  • Ball EE, Young D (1974) Structure and development of the auditory system in the prothoracic leg of the cricket Teleogryllus commodus (Walker). II. Postem-bryonic development. Z Zellforsch Mikrosk Anat 147:313–324.

    Article  PubMed  CAS  Google Scholar 

  • Belwood JJ, Morris GK (1987) Bat predation and its influence on calling behavior in neotropical katydids. Science 238:64–67.

    Article  PubMed  CAS  Google Scholar 

  • Boyan GS, Fullard JH (1986) Interneurons responding to sound in the tobacco budworm moth Heliothis virescens (Noctuidae): morphological and physiological characteristics. J Comp Physiol 158:391–404.

    Article  Google Scholar 

  • Boyan G, Williams L, Fullard J (1990) Organization of the auditory pathway in the thoracic ganglia of noctuid moths. J Comp Neurol 295:248–267.

    Article  PubMed  CAS  Google Scholar 

  • Brodfuehrer PD, Hoy RR (1990) Ultrasound sensitive neurons in the cricket brain. J Comp Physiol 166: 651–662.

    Article  CAS  Google Scholar 

  • Camhi J (1984) Neuroethology. Sunderland: Sinauer Associates.

    Google Scholar 

  • Casaday GB, Hoy RR (1977) Auditory interneurons in the cricket Teleogryllus oceanicus: Physiological and anatomical properties. J Comp Physiol 121:1–13.

    Article  Google Scholar 

  • Cranbrook, the Earl of, Barrett HF (1965) Observations on noctule bats (Nyctalus noctula) captured while feeding. Proc Zool Soc Lond 144:1–24.

    Google Scholar 

  • Dethier VG (1963) The Physiology of Insect Senses. New York: John Wiley & Sons.

    Google Scholar 

  • Dunning DC, Roeder KD (1965) Moth sounds and the insect catching behavior of bats. Science 147:173–174.

    Article  PubMed  CAS  Google Scholar 

  • Eaton RC (1984) Neural Mechanisms of Startle Behavior. New York: Plenum Press.

    Google Scholar 

  • Ewing AW (1989) Anthropod Bioacoustics. Ithaca, NY: Comstock Publ. Assoc.

    Google Scholar 

  • Fenton MB, Fullard JH (1983) Moth hearing and the feeding strategies of bats. Amer Sei 69:266–275.

    Google Scholar 

  • Fullard JH (1984) Acoustic relationships between tympanate moths and the Hawaiian hoary bat (Lasiurus cinereus somotus). J Comp Physiol 155:795–801.

    Article  Google Scholar 

  • Fullard JH (1987) Sensory ecology and neuroethology of moths and bats: interactions in a global perspective. In: Fenton MB, Racey P, Rayner JMV (eds) Recent Advances in the study of bats. Cambridge: Cambridge U. Press, pp. 244–272.

    Google Scholar 

  • Gould SJ, Vrba ES (1982) Exaptation-a missing term in the science of form. Paleobiology 8:4–15.

    Google Scholar 

  • Grey EG (1960) The fine structure of the insect ear. Phil Trans R Soc Lond B 243:75–94.

    Article  Google Scholar 

  • Gregory GE (1974) Neuroanatomy of the mesothoracic ganglion of the cockroach Periplaneta americana (L.). I. The roots of the peripheral nerves. Phil Trans R Soc Lond B 267:421–465.

    Article  CAS  Google Scholar 

  • Gwynne DF, Edwards ED (1986) Ultrasound production by genital stridulation in Syntonarca iriastris (Lepidoptera: Pyralidae): long-distance signalling by male moths? Zool J Linn Soc 88:363–376.

    Article  Google Scholar 

  • Henry CS (1980) The importance of low-frequency, substrate-borne sounds in lacewing communication (Neuroptera: Chrysopidae). Ann Ent Soc Amer 73:617–621.

    Google Scholar 

  • Hoy RR (1989) Startle, categorical response, and attention in acoustic behavior of insects. Ann Rev Neurosci 12:355–375.

    Article  PubMed  CAS  Google Scholar 

  • Hoy RR, Nolen TG, Brodfuehrer PD (1989) The neuroethology of acoustic startle and escape in flying insects. J Exp Biol 146:287–306.

    PubMed  CAS  Google Scholar 

  • Huber R, Markl H (1983) Neuroethology and Behavioral Physiology. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Huber F, Moore TE, Loher W (1989) Cricket Behavior and Neurobiology. Ithaca: Cornell University Press.

    Google Scholar 

  • Kalmring K, Eisner N (1985) Acoustic and Vibrational Communication in Insects. Berlin: Springer-Verlag.

    Google Scholar 

  • Libersat F, Hoy RR (1989) Soc Neurosci Abst 15:348.

    Google Scholar 

  • Meier T, Reichert H (1989) Development and evolution of segmentally homologous sensory systems in the locust. Soc Neurosci Abst 15:1286.

    Google Scholar 

  • Meier T, Reichert H Embryonic development and evolutionary origins of the orthopteran auditory organs. J Neurobio 21:592–610.

    Google Scholar 

  • Michelsen A, Larsen ON (1985) Hearing and Sound. In: Kerkut GA, Gilbert LI (eds) Comprehensive Insect Physiology Biochemistry and Pharmacology. New York: Pergamon, pp. 495–555.

    Google Scholar 

  • Miller LA (1970) Structure of the green lacewing tym-panal organ (Chrysopa carnea). J Morphol 131: 359–382.

    Article  Google Scholar 

  • Miller LA (1971) Physiological responses of green lace wings (Chrysopa, Neuroptera) to ultrasound. J Insect Physiol 17:491–506.

    Article  Google Scholar 

  • Miller LA (1975) The behavior of flying green lacewings. Chrysopa carnea, in the presence of ultrasound. J Insect Physiol 21:205–219.

    Article  Google Scholar 

  • Moiseff A, Hoy RR (1983) Sensitivity to ultrasound in an identified auditory interneuron in the cricket: a possible neural link to phonotactic behavior. J Comp Physiol 152:155–167.

    Article  Google Scholar 

  • Moiseff A, Pollack GS, Hoy RR (1978) Steering responses of flying crickets to sound and ultrasound: mate attraction and predator avoidance. Proc Natl Acad Sei USA 75:4052–4056.

    Article  CAS  Google Scholar 

  • Moulins M (1976) Ultrastructure of chordotonal organs. In: Mill PJ (ed) Structure and Function of Proprioceptors in the Invertebrates. London: Chapman & Hall.

    Google Scholar 

  • Nelson MC (1980) Are subgenual organs “ears” for hissing cockroaches? Soc Neurosci Abst 6:198.5.

    Google Scholar 

  • Nelson M, Fraser J (1979) Sound production in the cock-roach, Gromphadorhina portentosa: evidence for communication by hissing. Behav Ecol and Sociobiol 6:305–314.

    Article  CAS  Google Scholar 

  • Nolen TG, Hoy RR (1984) Initiation of behavior by single neurons: the role of behavioral context. Science 226:992–994.

    Article  PubMed  CAS  Google Scholar 

  • Novacek MJ (1985) Evidence for echolocation in the oldest known bats. Nature 315:140–141.

    Article  PubMed  CAS  Google Scholar 

  • Oldfield BP (1985) The tuning of auditory receptors in bushcrickets. Hearing Research 17:27–35.

    Article  PubMed  CAS  Google Scholar 

  • Oldfield BP, Kleindienst H-U, Huber F (1986) Physiology and tonotopic organization of auditory receptors in the cricket Gryllus bimaculatus De Geer. J Comp Physiol 159:457–464.

    Article  CAS  Google Scholar 

  • Pearson KG, Boyan GS, Bastiani MJ, Goodman CS (1985). Heterogeneous properties of segmentally homologous interneurons in the ventral nerve cord of locusts. J Comp Neurol 233:133–145.

    Article  PubMed  CAS  Google Scholar 

  • Popov AV, Shuvalov VF (1977) Phonotactic behavior of crickets. J Comp Physiol 119:111–126.

    Article  Google Scholar 

  • Rehbein HG (1976) Auditory neurons in the ventral cord of the locust: morphological and functional properties. J Comp Physiol 110:233–250.

    Article  Google Scholar 

  • Robert D (1989) The auditory behavior of flying locusts. JExp Biol 147:279–301.

    Google Scholar 

  • Robertson RM, Pearson KG (1983) Interneurons in the flight system of the locust: distribution, connections, and resetting properties. J Comp Neurol 215:33–50.

    Article  PubMed  CAS  Google Scholar 

  • Roeder KD (1967) Nerve Cells and Insect Behavior. Cambridge: Harvard University Press.

    Google Scholar 

  • Romer H (1983) Tonotopic organisation of the auditory neuropile in the bushcricket, Tettigonia viridissima. Nature 306:60–62.

    Article  Google Scholar 

  • Romer H, Marquart V, Hardt M (1988) Organization of a sensory neuropile in the auditory pathway of two groups of orthoptera. J Comp Neurol 275:201–215.

    Article  PubMed  CAS  Google Scholar 

  • Roeder KD, Treat AE (1957) Ultrasonic reception by the tympanic organs of noctuid moths. J Exper Zool 134:127–158.

    Article  CAS  Google Scholar 

  • Sharov A (1971) Phylogeny of the Orthopteroidea. Jerusalem: Israel Program for Sciencitif Publications.

    Google Scholar 

  • Slifer EH (1935) Morphology and development of the femoral chordotonal organs of Melanoplus differentialis (Orthoptera, Acrididae). J Morph 58:615–637.

    Article  Google Scholar 

  • Spangler HG (1988) Hearing in tiger beetles (Cicindelidae). Physiol Entomol 13:447–452.

    Article  Google Scholar 

  • Surlykke A (1984) Hearing in notodontid moths. A hearing organ with only a single auditory neurone. J Exp Biol 113:323–335.

    Google Scholar 

  • Ulagaraj SM, Walker TJ (1973). Phonotaxis of crickets in flight: attraction of male and female crickets to male calling songs. Science 182:1278–1279.

    Article  PubMed  CAS  Google Scholar 

  • Walker TJ, Masaki S (1989) Natural History. In: Huber F, Moore TE, Loher W (eds) Cricket Behavior and Neurobiology. Ithaca: Cornell University Press.

    Google Scholar 

  • Wohlers DW, Huber F (1982) Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L. J Comp Physiol 146:161–173.

    Article  Google Scholar 

  • Yack JE, Fullard JH The mechanoreceptive origin of insect tym-panal organs: a comparative study of similar nerves in tym-panate and atympante moths. J Comp Neurol (in press).

    Google Scholar 

  • Yager DD, Hoy RR (1986a) The cyclopean ear: a new sense for the praying mantis. Science 231:727–729.

    Article  PubMed  CAS  Google Scholar 

  • Yager DD, Hoy RR (1986b) Neuroethology of audition in the praying mantis, Creobroter gemmatus. Soc Neurosci Abst 12:202.

    Google Scholar 

  • Yager DD, Hoy RR (1987) The midline metathoracic ear of the praying mantis, Mantis religiosa. Cell Tissue Res 250:531–541.

    Article  PubMed  CAS  Google Scholar 

  • Yager DD, Hoy RR (1989) Audition in the praying mantis, Mantis religiosa L.: identification of an interneuron mediating ultrasonic hearing. J Comp Physiol 165:471–493.

    Article  CAS  Google Scholar 

  • Yager DD, May ML, Fenton MB (1990) Ultrasound-triggered, flight-gated evasive maneuvers in the praying mantis Parasphendale agrionina. J Exp Biol 152: 17–39.

    PubMed  CAS  Google Scholar 

  • Zhantiev RD, Korsunovskaya OS (1978) Morphological organization of tym-panal organs in Tettigonia cantans (Orthoptera, Tettigoniidae). Zool J 57:1012–1016 (in Russian).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Hoy, R.R. (1992). The Evolution of Hearing in Insects as an Adaptation to Predation from Bats. In: Webster, D.B., Popper, A.N., Fay, R.R. (eds) The Evolutionary Biology of Hearing. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2784-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2784-7_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7668-5

  • Online ISBN: 978-1-4612-2784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics