Skip to main content

Evolution of Sound Localization in Mammals

  • Chapter
The Evolutionary Biology of Hearing

Abstract

The ability to locate the source of a sound too brief to be either scanned or tracked using head or pinna movements is of obvious advantage to an animal. Since most brief sounds are made by other animals, the ability to localize such sounds enables an animal to approach or avoid other animals in its immediate environment. Moreover, it can be used to direct the eyes, thus bringing another sense to bear upon the source of the sound. Given the value of sound localization to the survival of an animal, it is not surprising that the need to localize sound has been implicated as a primary source of selective pressure in the evolution of mammalian hearing (Masterton et al. 1969; Masterton 1974).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitkin LM, Irvine DRF, Webster WR (1984) Central neural mechanisms of hearing. In: Brookhard JM, Mountcastle VB (eds) Handbook of Physiology, Sect. 1: The Nervous System, Vol II, Pt. 2. American Physiological Society, Bethesda, MD, pp. 675–737.

    Google Scholar 

  • Altschuler RA, Parakkal MH, Fex J (1983) Localization of enkephalin-like immunoreactivity in acetylcholin-esterase-positive cells in the guinea-pig lateral superior olivary complex that project to the cochlea. Neuro-science 9:621–630.

    CAS  Google Scholar 

  • Aschoff A, Ostwald J (1987) Different origins of cochlear efferents in some bat species, rats, and guinea pigs. J Comp Neurol 264:56–72.

    PubMed  CAS  Google Scholar 

  • Belendiuk K, Butler RA (1975) Monaural localization of low-pass noise bands in the horizontal plane. J Acoust Soc Am 58:701–705.

    PubMed  CAS  Google Scholar 

  • Belendiuk K, Butler RA (1978) Directional hearing under progressive impoverishment of binaural cues. Sensory Proc 2:58–70.

    CAS  Google Scholar 

  • Binz H, Zimmermann E (1989) The vocal repertoire of adult tree shrews (Tupaia belangeri). Behaviour 109: 142–162.

    Google Scholar 

  • Boring EG (1942) Sensation and Perception in the History of Experimental Psychology. New York: Appleton-Century.

    Google Scholar 

  • Boudreau JC, Tsuchitani C (1968) Binaural interaction in the cat superior olive S segment. J Neurophysiol 31:442–454.

    PubMed  CAS  Google Scholar 

  • Brown CH, Beecher MD, Moody DB, Stebbins WC (1978) Localization of pure tones by old world monkeys. J Acoust Soc Am 65:1484–1492.

    Google Scholar 

  • Brown CH, Beecher MD, Moody DB, Stebbins WC (1980) Localization of noise bands by old world monkeys. J Acoust Soc Am 68:127–132.

    PubMed  CAS  Google Scholar 

  • Brown CH, May BJ (1990) Sound localization and binaural processes. In: Berkley MA, Stebbins WC (eds) Comparative Perception, Vol 1. New York: Wiley, pp. 247–284.

    Google Scholar 

  • Brown CH, Schessler T, Moody DB, Stebbins W (1982) Vertical and horizontal sound localization in primates. J Acoust Soc Am 72:1804–1811.

    PubMed  CAS  Google Scholar 

  • Burda H, Bruns V, Müller M (1990) Sensory adaptations in subterranean mammals. In: Nevo E, Reig OA (eds) Evolution of Subterranean Mammals at the Organismal and Molecular Levels. New York: Wiley-Liss, pp. 269–293.

    Google Scholar 

  • Butler RA (1975) The influence of the external and middle ear on auditory discriminations. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Vol V/2. New York: Springer-Verlag, pp. 247–260.

    Google Scholar 

  • Butler RA (1986) The bandwidth effect on monaural and binaural localization. Hearing Res 21:67–73.

    CAS  Google Scholar 

  • Butler RA (1987) An analysis of the monaural dis-placement of sound in space. Percept Psychophys 41:1–7.

    PubMed  CAS  Google Scholar 

  • Butler RA, Belendiuk K (1977) Spectral cues utilized in the localization of sound in the median sagittal plane. J Acoust Soc Am 61:1264–1269.

    PubMed  CAS  Google Scholar 

  • Butler RA, Flannery R (1980) The spatial attributes of stimulus frequency and their role in monaural localization of sound in the horizontal plane. Percept Psychophys 28:449–457.

    PubMed  CAS  Google Scholar 

  • Butler RA, Helwig CC (1983) The spatial attributes of stimulus frequency in the median sagittal plane and their role in sound localization. American J Otolaryngol 4:165–173.

    CAS  Google Scholar 

  • Butler RA, Planert N (1976) The influence of stimulus bandwidth on localization of sound in space. Percept Psychophys 19:103–108.

    Google Scholar 

  • Calford MB, Pettigrew JD (1984) Frequency dependence of directional amplification at the cat’s pinna. Hearing Res 14:13–19.

    CAS  Google Scholar 

  • Carlile S, Pettigrew AG (1987) Directional properties of the auditory periphery in the guinea pig. Hearing Res 31:111–122.

    CAS  Google Scholar 

  • Casseday JH, Neff WD (1973) Localization of pure tones. J Acoust Soc Am 54:365–372.

    PubMed  CAS  Google Scholar 

  • Don M, Starr A (1972) Lateralization performance of squirrel monkey (Samiri sciureus) to binaural click signals. J Neurophysiol 35:493–500.

    PubMed  CAS  Google Scholar 

  • Dooling RJ (1980) Behavior and psychophysics of hearing in birds. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 261–288.

    Google Scholar 

  • Ehret G (1977) Comparative psychoacoustics: Perspective of peripheral sound analysis in mammals. Naturwissenschaften 64:461–470.

    PubMed  CAS  Google Scholar 

  • Erulkar, SD (1972) Comparative aspects of spatial localization of sound. Physiol Rev 52:237–360.

    PubMed  CAS  Google Scholar 

  • Flannery R, Butler RA (1981) Spectral cues provided by the pinna for monaural localization in the horizontal plane. Percept Psychophys 29:438–444.

    PubMed  CAS  Google Scholar 

  • Fleischer G (1978) Evolutionary principles of the mammalian middle ear. Adv Anat Embryol Cell Biol 55:1–70.

    Google Scholar 

  • Fox MW, Cohen JA (1977) Canid communication. In: Sebeok TA (ed) How Animals Communicate. Bloomington: Indiana University Press, pp. 728–748.

    Google Scholar 

  • Fuzessery ZM (1986) Speculations on the role of frequency in sound localization. Brain Behav Evol 28:95–108.

    PubMed  CAS  Google Scholar 

  • Fuzessery ZM, Pollak GD (1985) Determinants of sound location selectivity in bat inferior colliculus: A combined dichotic and free-field stimulation study. J Neurophysiol 54:757–781.

    PubMed  CAS  Google Scholar 

  • Galambos R, Schwartzkopff J, Rupert A (1959) Macro-electrode studies of superior olivary nuclei. Am J Physiol 197:527–536.

    PubMed  CAS  Google Scholar 

  • Geyer LA, Barfield RJ (1979) Introduction to the symposium: Ultrasonic communication in rodents. Am Zoologist 19:411.

    Google Scholar 

  • Green DM (1976) An Introduction to Hearing. Hillsdale, New Jersey, Lawrence Erlbaum.

    Google Scholar 

  • Green S (1975) Variation of vocal pattern with social situation in the Japanese monkey (Macaca fuscata): A field study. In: Rosenblum LA (ed) Primate Behavior, Vol 4. New York: Academic Press, pp. 1–102.

    Google Scholar 

  • Harrison JM, Downey P (1970) Intensity changes at the ear as a function of the azimuth of a tone source: A comparative study. J Acoust Soc Am 47:1509–1518.

    PubMed  CAS  Google Scholar 

  • Heffner HE, Heffner RS (1984) Sound localization in large mammals: Localization of complex sounds by horses. Behav Neurosci 98:541–555.

    PubMed  CAS  Google Scholar 

  • Heffner HE, Heffner RS (1985a) Hearing in two cricetid rodents: Wood rat (Neotoma floridana) and grasshopper mouse (Onychomys leucogaster). J Comp Psychol 99:275–288.

    PubMed  CAS  Google Scholar 

  • Heffner HE, Heffner RS (1985b) Sound localization in wild Norway rats (Rattus norvegicus). Hearing Res 19:151–155.

    CAS  Google Scholar 

  • Heffner H, Masterton B (1980) Hearing in glires: Domestic rabbit, cotton rat, feral house mouse, and kangaroo rat. J Acoust Soc Am 68:1584–1599.

    Google Scholar 

  • Heffner HE, Ravizza RJ, Masterton B (1969) Hearing in primitive mammals, III: Tree shrew (Tupaia glis). J Audit Res 9:12–18.

    Google Scholar 

  • Heffner RS, Heffner HE (1982) Hearing in the elephant (Elephas maximus): Absolute sensitivity, frequency discrimination, and sound localization. J Comp Physiol Psychol 96:926–944.

    PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1983) Sound localization and high-frequency hearing in horses. J Acoust Soc Am 73:S42.

    Google Scholar 

  • Heffner RS, Heffner HE (1985) Auditory localization and visual fields in mammals. Neurosci Abstr 11:547.

    Google Scholar 

  • Heffner RS, Heffner HE (1986a) Localization of tones by horses: Use of binaural cues and the role of the superior olivary complex. Behav Neurosci 100:93–103.

    PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1986b) Variation in the use of binaural localization cues among mammals. Abstracts of the Ninth Midwinter Research Meeting of the Association for Research in Otolaryngology, 108.

    Google Scholar 

  • Heffner RS, Heffner HE (1987) Localization of noise, use of binaural cues, and a description of the superior olivary complex in the smallest carnivore, the least weasel (Mustela nivalis). Behav Neurosci 101:701–708.

    PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1988a) Interaural phase and intensity discrimination in the horse using dichotically presented stimuli. Abstracts of the Eleventh Midwinter Research Meeting of the Association for Research in Otolaryngology, 233.

    Google Scholar 

  • Heffner RS, Heffner HE (1988b) Sound localization acuity in the cat: Effect of azimuth, signal duration, and test procedure. Hearing Res 36:221–232.

    CAS  Google Scholar 

  • Heffner RS, Heffner HE (1988c) Sound localization and use of binaural cues by the gerbil (Meriones unguiculatus). Behav Neurosci 102:422–428.

    PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1988d) Sound localization in a predatory rodent, the northern grasshopper mouse (Onychomys leucogaster). J Comp Psychol 102:66–71.

    PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1988e) The relation between vision and sound localization acuity in mammals. Neurosci Abstr 14:1096.

    Google Scholar 

  • Heffner RS, Heffner HE (1989) Sound localization, use of binaural cues and the superior olivary complex in pigs. Brain Behav Evol 33:248–258.

    PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1990a) The importance of high frequencies for sound localization in mammals. Abstracts of the Thirteenth Midwinter Research Meeting of the Association for Research in Otolaryngology, 110.

    Google Scholar 

  • Heffner RS, Heffner HE (1990b) Vestigial hearing in a fossorial mammal, the pocket gopher, (Geomys bursarius). Hearing Res 46:239–252.

    CAS  Google Scholar 

  • Heffner RS, Heffner HE (1990c) Hearing in domestic pigs (Sus scrofa) and goats (Capra hircus). Hearing Res 48:231–240.

    CAS  Google Scholar 

  • Heffner RS, Masterton RB (1990) Sound localization in mammals: Brainstem mechanisms. In: Berkley MA, Stebbins WC (eds) Comparative Perception, Vol I. New York: John Wiley & Sons, pp. 285–314.

    Google Scholar 

  • Henning GB (1974) Detectability of interaural delay in high-frequency complex waveforms. J Acoust Soc Am 55:84–90.

    PubMed  CAS  Google Scholar 

  • Houben D, Gourevitch G (1979) Auditory lateralization in monkeys: An examination of two cues serving directional hearing. J Acoust Soc Am 66:1057–1063.

    PubMed  CAS  Google Scholar 

  • Hughes A (1977) The topography of vision in mammals of contrasting life style: Comparative optics and retinal organisation. In: Crescitelli F (ed) Handbook of Sensory Physiology, Vol VII/5. New York: Springer-Verlag, pp. 613–756.

    Google Scholar 

  • Humanski RA, Butler RA (1988) The contribution of the near and far ear toward localization of sound in the sagittal plane. J Acoust Soc Am 83:2300–2310.

    PubMed  CAS  Google Scholar 

  • Irvine DRF (1986) The auditory brainstem. In: Ottoson D (ed) Progress in Sensory Physiology, Vol 7. New York: Springer-Verlag, pp. 1–279.

    Google Scholar 

  • Irvine DRF (1987) Interaural intensity differences in the cat: Changes in sound pressure level at the two ears associated with azimuthal displacements in the frontal horizontal plane. Hearing Res 26:267–286.

    CAS  Google Scholar 

  • Irving R, Harrison JM (1967) The superior olivary complex and audition: A comparative study. J Comp Neurol 130:77–86.

    PubMed  CAS  Google Scholar 

  • Isley TE, Gysel LW (1975) Sound-source localization by the red fox. J Mammal 56:397–404.

    Google Scholar 

  • Jacobs DW, Hall JD (1972) Auditory thresholds of a fresh water dolphin, Inia goeffrensis Blainville. J Acoust Soc Am 51:530–533.

    Google Scholar 

  • Jeffress LA (1975) Localization of sound. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Vol V/2. New York: Springer-Verlag, pp. 449–459.

    Google Scholar 

  • Kelly JB, Glazier SJ (1978) Auditory cortex lesions and discrimination of spatial location by the rat. Brain Res 145:315–321.

    PubMed  CAS  Google Scholar 

  • Kelly JB, Kavanagh GL (1986) Effects of auditory cortical lesions on pure-tone sound localization by the albino rat. Behav Neurosci 100:569–575.

    PubMed  CAS  Google Scholar 

  • Kiley M (1972) The vocalizations of ungulates, their causation and function. Z Tierpsychol 31:171–222.

    PubMed  CAS  Google Scholar 

  • Konishi M (1969) Hearing, single-unit analysis, and vocalizations in songbirds. Science 166:1178–1181.

    PubMed  CAS  Google Scholar 

  • Kuhn GF (1977) Model for the interaural time differences in the azimuthal plane. J Acoust Soc Am 62: 157–167.

    Google Scholar 

  • Kuhn GF (1982) Towards a model for sound localization. In: Gatehouse RW (ed) Localization of Sound: Theory and Applications. Groton, CT: Amphora Press, pp. 51–64.

    Google Scholar 

  • Marler P (1955) Characteristics of some animal calls. Nature 176:6–8.

    Google Scholar 

  • Martin RL, Webster WR (1987) The auditory spatial acuity of the domestic cat in the interaural horizontal and median vertical planes. Hearing Res 30:239–252.

    CAS  Google Scholar 

  • Martin RL, Webster WR (1989) Interaural sound pressure level differences associated with sound-source locations in the frontal hemifield of the domestic cat. Hearing Res 38:289–302.

    CAS  Google Scholar 

  • Masterton RB (1974) Adaptation for sound localization in the ear and brainstem of mammals. Fed Proc 33: 1904–1910.

    PubMed  CAS  Google Scholar 

  • Masterton B, Heffner H, Ravizza R (1969) The evolution of human hearing. J Acoust Soc Am 45:966–985.

    PubMed  CAS  Google Scholar 

  • Masterton RB, Diamond IT (1964) Effects of auditory cortex ablation on discrimination of small binaural time differences. J Neurophysiol 27:15–36.

    PubMed  CAS  Google Scholar 

  • Masterton B, Diamond IT (1973) Hearing: Central neural mechanisms. In: Carterette EC, Friedman MP (eds) Handbook of Perception, Vol. 3: Biology of Perceptual Systems. Academic Press, New York, pp. 407–448.

    Google Scholar 

  • Masterton B, Thompson GC, Bechtold JK, RoBards MJ (1975) Neuroanatomical basis of binaural phase-difference analysis for sound localization: A comparative study. J Comp Physiol Psychol 89:379–386.

    PubMed  CAS  Google Scholar 

  • Mayr E (1961) Cause and effect in biology. Science 134:1501–1506.

    PubMed  CAS  Google Scholar 

  • McCormick JG, Wever EG, Palin J, Ridgway SH (1970) Sound conduction in the dolphin ear. J Acoust Soc Am 48:1418–1428.

    PubMed  Google Scholar 

  • McFadden D, Pasanen EG (1976) Lateralization at high frequencies based on interaural time differences. J Acoust Soc Am 59:634–639.

    PubMed  CAS  Google Scholar 

  • Middlebrooks JC (1990) Two-dimensional localization of narrowband sound sources. Abstracts of the Thirteenth Midwinter Research Meeting of the Association for Research in Otolaryngology, 109.

    Google Scholar 

  • Middlebrooks JC, Makous JC, Green DM (1989) Directional sensitivity of sound-pressure levels in the human ear canal. J Acoust Soc Am 86:89–108.

    PubMed  CAS  Google Scholar 

  • Mills AW (1972) Auditory localization. In: Tobias JV (ed) Foundations of Modern Auditory Theory, Vol II. New York: Academic Press, pp. 303–348.

    Google Scholar 

  • Mogdans J, Ostwald J, Schnitzler H-U (1988) The role of pinna movement for the localization of vertical and horizontal wire obstacles in the greater horseshoe bat, Rhinolopus ferrumequinum. J Acoust Soc Am 84: 1676–1679.

    Google Scholar 

  • Mooney SE, Heffner HE, Heffner RS (1990) Hearing in two species of rodents: Darwin’s leaf-eared mouse (Phyllotis darwini) and the spiny mouse (Acomys cahirinus). Abstracts of the Thirteenth Midwinter Research Meeting of the Association for Research in Otolaryngology, 176.

    Google Scholar 

  • Moore JK (1987) The human auditory brain stem: A comparative view. Hearing Res 29:1–32.

    CAS  Google Scholar 

  • Moore PWB (1975) Underwater localization of click and pulsed pure-tone signals by the California sea lion (Zalophus californianus). J Acoust Soc Am 57:406–410.

    PubMed  CAS  Google Scholar 

  • Moore PWB, Au WWL (1975) Underwater localization of pulsed pure tones by the California sea lion (Zalophus californianus). J Acoust Soc Am 58:721–727.

    PubMed  CAS  Google Scholar 

  • Musicant AD, Butler RA (1984a) The influence of pinnae-based spectral cues on sound localization. J Acoust Soc Am 75:1195–1200.

    PubMed  CAS  Google Scholar 

  • Musicant AD, Butler RA (1984b) The psychophysical basis of monaural localization. Hearing Res 14:185–190.

    CAS  Google Scholar 

  • Musicant AD, Butler RA (1985) Influence of monaural spectral cues on binaural localization. J Acoust Soc Am 77:202–208.

    PubMed  CAS  Google Scholar 

  • Norris KS, Harvey GW (1974) Sound transmission in the porpoise head. J Acoust Soc Am 56:659–664.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Brugge JF (1985) Progress in neurophysiology of sound localization. Annu Rev Psychol 36: 245–274.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Calford MB, Pettigrew JD, Aitkin LM, Semple MN (1982) Directionality of sound pressure transformation at the cat’s pinna. Hearing Res 8:13–28.

    CAS  Google Scholar 

  • Pumphrey RJ (1950) Hearing. Symp Soc Exp Biol 4: 1–18.

    Google Scholar 

  • Ravizza RJ, Masterton B (1972) Contribution of neocortex to sound localization in opossum (Didelphis virginiana). J Neurophysiol 35:344–356.

    PubMed  CAS  Google Scholar 

  • Renaud DL, Popper AN (1975) Sound localization by the bottlenose porpoise Tursiops truncatus. J Exp Biol 63:569–585.

    PubMed  CAS  Google Scholar 

  • Roffler SK, Butler RA (1968a) Factors that influence the localization of sound in the vertical plane. J Acoust Soc Am 43:1255–1259.

    PubMed  CAS  Google Scholar 

  • Roffler SK, Butler RA (1968b) Localization of tonal stimuli in the vertical plane. J Acoust Soc Am 43:1260–1266.

    PubMed  CAS  Google Scholar 

  • Rolls ET, Cowey A (1970) Topography of the retina and striate cortex and its relationship to visual acuity in rhesus monkeys and squirrel monkeys. Exp Brain Res 10:298–310.

    PubMed  CAS  Google Scholar 

  • Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol 30:769–793.

    PubMed  CAS  Google Scholar 

  • Sales GD, Pye JD (1974) Ultrasonic Communication by Animals. New York: John Wiley and Sons.

    Google Scholar 

  • Shaw EAG (1974) The external ear. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology: Auditory System, Vol V/1. New York: Springer-Verlag, pp. 455–490.

    Google Scholar 

  • Siegmund H, Santibañez-HG (1981) Effects of motor denervation of the external ear muscles on the audiovisual targeting reflex in cats. Acta Neurobiol Exp 41:1–13.

    CAS  Google Scholar 

  • Stein BE, Clamann HP (1981) Control of pinna movements and sensorimotor register in cat superior colliculus. Brain Behav Evol 19:180–192.

    PubMed  CAS  Google Scholar 

  • Stevens SS, Newman EB (1936) The localization of actual sources of sound. Am J Psychol 48:297–306.

    Google Scholar 

  • Stone J (1981) The Wholemount Handbook. Sydney: Maitland Publications Pty.

    Google Scholar 

  • Terhune JM (1974) Directional hearing of a harbor seal in air and water. J Acoust Soc Am 56:1862–1865.

    PubMed  CAS  Google Scholar 

  • Terhune JM (1985) Localization of pure tones and click trains by untrained humans. Scand Audiol 14: 125–131.

    PubMed  CAS  Google Scholar 

  • Wakeford OS, Robinson DE (1974) Lateralization of tonal stimuli by the cat. J Acoust Soc Am 55:649–652.

    PubMed  CAS  Google Scholar 

  • Walser ES, Walters E, Hauge P (1981) A statistical analysis of the structure of bleats from sheep of four different breeds. Behaviour 77:67–76.

    Google Scholar 

  • Webster DB (1966) Ear structure and function in modern mammals. Am Zoologist 6:451–466.

    CAS  Google Scholar 

  • Webster DB, Webster M (1984) The specialized auditory system of kangaroo rats. In: Neff WD (ed) Contributions to Sensory Physiology, Vol 8. New York: Academic Press, pp. 161–196.

    Google Scholar 

  • Wenstrup JJ (1984) Auditory sensitivity in the fish-catching bat, Noctilio leporinus. J Comp Physiol A 155:91–101.

    Google Scholar 

  • West CD (1985) The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. J Acoust Soc Am 77:1091–1101.

    PubMed  CAS  Google Scholar 

  • White JS, Warr WB (1983) The dual origins of the olivocochlear bundle in the albino rat. J Comp Neurol 219:203–214.

    PubMed  CAS  Google Scholar 

  • Whittington DA, Hepp-Reymond MC, Flood W (1981) Eye and head movements to auditory targets. Experimental Brain Res 41:358–363.

    CAS  Google Scholar 

  • Yost WA, Dye RH Jr (1988) Discrimination of interaural differences of level as a function of frequency. J Acoust Soc Am 83:1846–1851.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Heffner, R.S., Heffner, H.E. (1992). Evolution of Sound Localization in Mammals. In: Webster, D.B., Popper, A.N., Fay, R.R. (eds) The Evolutionary Biology of Hearing. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2784-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2784-7_43

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7668-5

  • Online ISBN: 978-1-4612-2784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics