The Phylogeny of Octavolateralis Ontogenies: A Reaffirmation of Garstang’s Phylogenetic Hyphothesis

  • R. Glenn Northcutt

Abstract

The relationship of ontogeny—the development or life history of an individual—to phylogeny—the history of successive biological populations—has been a focus of biological research for almost 200 years, and a number of solutions have been proposed (see Russell 1916; Holmes 1944; de Beer 1958; Gould 1977; Kluge and Strauss 1985, and Northcutt 1990a for reviews). Garstang’s proposal (1922), however, appears to be the most insightful. Garstang realized that phylogeny is usually perceived as a succession of adults, when, in fact, it is the result of changes, through time, in an ancestral life history (those stages and processes that span the development of one zygote to another zygote). Thus in Garstang’s view, subsequent changes in an ancestral ontogeny create phylogeny.

Keywords

Migration Depression Neurol Sine Lution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberch P (1985) Problems with the interpretation of developmental sequences. Syst Zool 34:46–58.CrossRefGoogle Scholar
  2. Alberch P, Gould SJ, Oster GF, Wake DB (1979) Size and shape in ontogeny and phylogeny. Paleobiology 5: 296–317.Google Scholar
  3. Allis EP (1889) The anatomy and development of the lateral line system in Amia calva. J Morphol 2:463–566.CrossRefGoogle Scholar
  4. Allis EP (1923) The cranial anatomy of Chlamydo-selachus anguineus. Acta Zool 4:123–221.CrossRefGoogle Scholar
  5. Ayers H, Worthington J (1907) The skin end-organs of the trigeminus and lateralis nerves of Bdellostoma dombeyi. Am J Anat 7:327–336.CrossRefGoogle Scholar
  6. Balinsky BI (1975) An Introduction to Embryology, 4th Ed. Philadelphia: W. B. Saunders.Google Scholar
  7. Beard J (1884) On the segmental sense organs of the lateral line, and on the morphology of the vertebrate auditory organ. Zoologisch Anzeig 7:123–126.Google Scholar
  8. Beckwith CJ (1907) The early development of the lateral line system of Amia calva. Biol Bull 14:23–28.CrossRefGoogle Scholar
  9. Bemis WE (1984) Paedomorphosis and the evolution of the Dipnoi. Paleobiology 10:293–307.Google Scholar
  10. Bemis WE, Hetherington TE (1982) The rostral organ of Latimeria chalumnae: morphological evidence of an electroreceptive function. Copeia 1982:467–471.CrossRefGoogle Scholar
  11. Bemis WE, Northcutt RG (1987) Pore canals of devonian lungfishes did not house electroreceptors. Am Zool 27:168A.Google Scholar
  12. Bodznick D, Northcutt RG (1981) Electroreception in lampreys: evidence that the earliest vertebrates were electroreceptive. Science 212:465–467.PubMedCrossRefGoogle Scholar
  13. Brooks DR, Wiley EO (1985) Theories and methods in different approaches to phylogenetic systematics. Cladistics 1:1–11.CrossRefGoogle Scholar
  14. Bullock TH, Bodznick DA, Northcutt RG (1983) The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 6:25–46.CrossRefGoogle Scholar
  15. Campbell RL, Richie DM (1983) Problems in the theory of developmental sequences: prerequisites and precursors. Hum Dev 26:156 172.Google Scholar
  16. Clapp CM (1898) The lateral line system of Batrachus. J Morphol 15:223–265.CrossRefGoogle Scholar
  17. Coghill GE (1916) Correlated anatomical and physiological studies of the growth of the nervous system of Amphibia. J Comp Neurol 26:247–340.CrossRefGoogle Scholar
  18. Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp 553–594.Google Scholar
  19. Damas H (1944) Recherches sur le développement de Lampetra fluviatilis (L.), contribution a l’étude de la cephalogenèse. Arch Biol 55:1–284.Google Scholar
  20. Damas H (1951) Observations sur le développement des ganglions crâniens chez Lampetra fluviatilis (L.). Arch Biol 62:65–95.Google Scholar
  21. Danser BH (1950) A theory of systematics. Bibl Biotheoret 4:117–180.Google Scholar
  22. de Beer G (1958) Embryos and Ancestors, 3rd Ed. London: Oxford University Press.Google Scholar
  23. de Queiroz K (1985) The ontogenetic method for determining character polarity and its relevance to phylogenetic systematics. Syst Zool 34:280–299.CrossRefGoogle Scholar
  24. Denison RH (1964) The Cyathaspididae. Fieldiana. Geology 13:307–473.Google Scholar
  25. Disier NN (1977) The lateral line system sense organs or sharks (Elasmobranchii). Moscow: Science Publications.Google Scholar
  26. Duellman WE, Trueb L (1986) Biology of Amphibians. New York: McGraw-Hill.Google Scholar
  27. Eldredge N, Cracraft J (1980) Phylogenetic Patterns and the Evolutionary Process. New York: Columbia University Press.Google Scholar
  28. Fernholm B (1985) The lateral line system of cyclostomes. In: Foreman RE, Gorbman A, Dodd JM, Olsson R (eds) Evolutionary Biology of Primitive Fishes. New York: Plenum, pp 113–122.Google Scholar
  29. Fields RD (1982) Electroreception in the ratfish (subclass Holocephali): anatomical, behavioral, and physiological studies. PhD Thesis, Department of Biology, San Jose State University, San Jose, CA.Google Scholar
  30. Finger TE, Bell CC, Carr CE (1986) Comparisons among electroreceptive teleosts: why are electrosensory systems so similar? In: Bullock TH, Heiligenberg W (eds) Electroreception. New York: John Wiley & Sons, pp 465–481.Google Scholar
  31. Fink WL (1982) The conceptual relationship between ontogeny and phylogeny. Paleobiology 8:254–264.Google Scholar
  32. Fritzsch B (1989) Diversity and regression in the amphibian lateral line and electrosensory system. In: Coombs S, Görner P, Münz P (eds) The Mechano-sensory Lateral line. New York: Springer-Verlag, pp 99–114.CrossRefGoogle Scholar
  33. Fritzsch B, Bolz D (1986) On the development of electroreceptive ampullary organs of Triturus alpestris (Amphibia: Urodela). Amphibia-Reptilia 7:1–9.CrossRefGoogle Scholar
  34. Fritzsch B, Wake MH (1986) A note on the distribution of ampullary organs in gymnophions. J Herpetol 20:90–93.CrossRefGoogle Scholar
  35. Gans C (1974) Biomechanics. Philadelphia: Lippincott.Google Scholar
  36. Gans C (1989) Stages in the origin of vertebrates: analysis by means of scenarios. Biol Rev 64:221–268. PubMedCrossRefGoogle Scholar
  37. Garstang W (1922) The theory of recapitulation: a critical re-statement of the biogenic law. Zool J Linnean Soc Lond 35:81–101.CrossRefGoogle Scholar
  38. Gould SJ (1977) Ontogeny and Phylogeny. Cambridge: Harvard University Press.Google Scholar
  39. Hammarberg F (1937) Zur Kenntnis der ontogenetischen Entwicklung des Schädels von Lepidosteus platystomus. Acta Zool 18:209–337.CrossRefGoogle Scholar
  40. Hardisty MW (1979) Biology of the Cyclostomes. London: Chapman Hall.Google Scholar
  41. Harrison RG (1904) Experimentelle Untersuchungen über die Entwicklung der Sinnesorgane der Seitenlinie bei den Amphibien. Arch Mikroscop Anat Entwicklungsgesch 63:35–149.Google Scholar
  42. Hennig W (1966) Phylogenetic Systematics. Urbana: University of Illinois Press.Google Scholar
  43. Holmes SJ (1944) Recapitulation and its supposed causes. Quarterly Rev Biol 19:319–331.CrossRefGoogle Scholar
  44. Holmgren N (1940) Studies on the head in fishes; embryological, morphological, and phylogenetical researches. Acta Zool 21:51–267.CrossRefGoogle Scholar
  45. Holmgren N (1942) General morphology of the lateral sensory line system of the head in fish. Kungl Sven Handling 20:1–46.Google Scholar
  46. Huettner AF (1949) Fundamentals of Comparative Embryology of the Vertebrates. New York: Mac-millan.Google Scholar
  47. Janvier P (1974) The sensory line system and its innervation in the Osteostraci (Agnatha, Cephalaspidomor-phi). Zool Scripta 3:91–99.CrossRefGoogle Scholar
  48. Janvier P (1978) Les negeoires paires des Ostéostracés et la position systématique des Céphalaspidomorphes. Ann Paléontol (Vertébres) 64:113–142.Google Scholar
  49. Janvier P (1981) The phylogeny of the craniata, with particular reference to the significance of fossil “agnathans”. J Vert Paleontol 1:121–159.CrossRefGoogle Scholar
  50. Jarvik E (1980) Basic Structure and Evolution of Vertebrates, 2 Vols. London: Academic Press.Google Scholar
  51. Johnson SE (1917) Structure and development of the sense organs of the lateral canal system of selachians (Mustelus cards and Squalus acanthias). J Comp Neurol 28:1–74.CrossRefGoogle Scholar
  52. Kishida R, Goris RC, Nishizawa H, Koyama H, Katoda T, Amemiya F (1987) Primary neurons of the lateral line nerve and their central projections in hagfishes. J Comp Neurol 264:303–310.PubMedCrossRefGoogle Scholar
  53. Kluge AG (1985) Ontogeny and phylogenetic systematics. Cladistics 1:13–27.CrossRefGoogle Scholar
  54. Kluge AG (1988) The characterization of ontogeny. In: Humpries CJ (ed) Ontogeny and Systematics. New York: Columbia University Press, pp 57–81.Google Scholar
  55. Kluge AG, Strauss RE (1985) Ontogeny and systematics. Ann Rev Ecol Syst 16:247–268.CrossRefGoogle Scholar
  56. Knouff RA (1935) The developmental pattern of ectodermal placodes in Rana pipiens. J Comp Neurol 62: 17–65.CrossRefGoogle Scholar
  57. Kupffer C von (1895) Studien zur vergeichenden Entwicklungsgeschichte des Kopfes der Kranioten. Heft. 3, Die Entwicklung der Kopfnerven von Ammocoetes Pianeri. München, J.F. Lehmann: pp. I–80. Google Scholar
  58. Landacre FL (1910) The origin of the cranial ganglia in Ameiurus. J Comp Neurol 20:309–411.CrossRefGoogle Scholar
  59. Landacre FL (1912) The epibranchial placodes of Lepisosteus osseus and their relation to the cerebral ganglia. J Comp Neurol 22:1–69.CrossRefGoogle Scholar
  60. Landacre FL (1916) The cerebral ganglia and early nerves of Squalus acanthias. J Comp Neurol 27: 19–67.CrossRefGoogle Scholar
  61. Landacre FL, Conger AC (1913) The origin of the lateral line primordia in Lepidosteus osseus. J Comp Neurol 23:575–633.Google Scholar
  62. Langille RM, Hall BK (1989) Developmental processes, developmental sequences and early vertebrate phylogeny. Biol Rev 64:73–91.PubMedCrossRefGoogle Scholar
  63. Lannoo MJ (1985) Neuromast topography in Ambystoma larvae. Copeia 535–539. Google Scholar
  64. Lannoo MJ (1987) Neuromast topography in urodele amphibians. J Morphol 191:247–263.CrossRefGoogle Scholar
  65. Lekander B (1949) The sensory line system and the canal bones in the head of some Ostariophysi. Acta Zool 30:1–131.CrossRefGoogle Scholar
  66. Liem KF (1973) Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst Zool 22:424–441.CrossRefGoogle Scholar
  67. Løvtrup, S (1978) On von Baerian and Haeckelian recapitulation. Syst Zool 27:348–352.CrossRefGoogle Scholar
  68. Mabee PM (1987) Phylogenetic change and ontogenetic interpretation in the family Centrarchidae (Pisces: Perciformes). PhD Thesis, Duke University, Durham, North Carolina.Google Scholar
  69. Mabee PM (1989a) An empirical rejection of the ontogenetic polarity criterion. Cladistics 5:409–416.CrossRefGoogle Scholar
  70. Mabee PM (1989b) Assumptions underlying the use of ontogenetic sequences for determining character state order. Trans Am Fish Soc 118:151–158.CrossRefGoogle Scholar
  71. Mayr E (1960) The emergence of evolutionary novelties. In: Tax S (ed) Evolution after Darwin, Vol. 2. Chicago: University of Chicago Press, pp 349–380.Google Scholar
  72. McCormick CA (1982) The organization of the octavo-lateralis area in actinopterygian fishes: a new interpretation. J Morphol 171:159–181.CrossRefGoogle Scholar
  73. McCormick CA, Braford MR, Jr (1988) Central connections of the octavolateralis system: evolutionary considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp 733–756.Google Scholar
  74. Metcalfe WK (1985) Sensory neuron growth cones comigrate with posterior lateral line primordial cells in zebrafish. J Comp Neurol 238:218–224.PubMedCrossRefGoogle Scholar
  75. Metcalfe WK, Kimmel CB, Schabtach E (1985) Anatomy of the posterior lateral line system in young larvae of the zebrafish. J Comp Neurol 233:377–389.PubMedCrossRefGoogle Scholar
  76. Moodie RL (1908) The lateral line system in extinct Amphibia. J Morphol 19:511–541.CrossRefGoogle Scholar
  77. Nelsen OE (1953) Comparative Embryology of the Vertebrates. New York: The Blakiston Co.Google Scholar
  78. Nelson G (1973) The higher-level phylogeny of the vertebrates. Syst Zool 22:87–91.CrossRefGoogle Scholar
  79. Nelson G (1978) Ontogeny, phylogeny, paleontology, and the biogenetic law. Syst Zool 27:324–345.CrossRefGoogle Scholar
  80. Nelson G (1985) Outgroups and ontogeny. Cladistics 1:29–45.CrossRefGoogle Scholar
  81. Nelson G, Platnick NI (1981) Systematics and Biogeography: cladistics and vicariance. New York: Columbia University Press.Google Scholar
  82. Noden DM, de Lahunta A (1985) The Embryology of Domestic Animals. Baltimore: Williams & Wilkins.Google Scholar
  83. Noden DM, Van De Water TR (1986) The developing ear: tissue origins and interactions. In: Ruben RJ, Van De Water TR, Rubel EW (eds) The Biology of Change in Otolaryngology. Amsterdam, New York and Oxford: Excerpta Medica, pp. 15–46.Google Scholar
  84. Northcutt RG (1984) Evolution of the vertebrate central nervous system: patterns and processes. Am Zool 24:701–716.Google Scholar
  85. Northcutt RG (1986a) Embryonic origin of amphibian electroreceptors. Soc Neurosci Abstr 12:103.Google Scholar
  86. Northcutt RG (1986b) Electroreception in non-teleost bony fishes. In: Bullock TH, Heiligenberg W (eds) Electroreception. New York: Wiley, pp 257–285.Google Scholar
  87. Northcutt RG (1987) Development of the lateral line system of the channel catfish. Soc Neurosci Abstr 13:133.Google Scholar
  88. Northcutt RG (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Münz H (eds) Neurobiology and Evolution of the Lateral Line System. New York: Springer-Verlag, pp 17–78.Google Scholar
  89. Northcutt RG (1990a) Ontogeny and phylogeny: a re-evaluation of conceptual relationships and some applications. Brain Behav Evol 36:116–140.PubMedCrossRefGoogle Scholar
  90. Northcut RG (1990b) The lateral line system of the axolotl. Axolotl Newsletter 19:5–14.Google Scholar
  91. Northcut RG, Fritzsch B, Brändle K (1990) Experimental evidence that ampullary organs of salamanders derive from placodal material. Soc Neurosci Abstr 16:129.Google Scholar
  92. Northcut RG, Gans C (1983) The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q Rev Biol 58:1–28.CrossRefGoogle Scholar
  93. Northcut RG, Vischer HA (1988) Eigenmannia possesses autapomorphic rami of the anterior lateral line nerves. Soc Neurosci Abstr 14:54.Google Scholar
  94. Ørvig T (1971) Comments on the lateral line system of some brachythoracid and ptyctodontid arthrodires. Zool Scripta 1:5–35.CrossRefGoogle Scholar
  95. Pehrson T (1949) The ontogeny of the lateral line system in the head of dipnoans. Acta Zoolog 30:153–182.CrossRefGoogle Scholar
  96. Platt JB (1896) Ontogenetic differentiations of the ectoderm in Necturus. Q J Microscop Sei 38:485–547.Google Scholar
  97. Puzdrowski RL (1989) The peripheral distribution and central projections of the lateral line nerves in goldfish, Carassius auratus. Brain Behav Evol 34:110–131.PubMedCrossRefGoogle Scholar
  98. Remane A (1956) Die Grundlagen des natürlichen Systems der vergleichenden Anatomie und Phylogenetik. Leipzig: Geest und Portig, K. G.Google Scholar
  99. Ronan M (1986) Electroreception in cyclostomes. In: Bullock TH, Heiligenberg W (eds) Electroreception. New York: Wiley, pp 209–224.Google Scholar
  100. Ronan MC, Bodznick D (1986) End buds: non-ampullary electroreceptors in adult lampreys. J Comp Physiol 158:9–16.CrossRefGoogle Scholar
  101. Ronan MC, Northcutt RG (1987) Primary projections of the lateral line nerves in adult lampreys. Brain Behav Evol 30:62–81.PubMedCrossRefGoogle Scholar
  102. Rosen DE (1982) Do current theories of evolution satisfy the basic requirements of explanation? Syst Zool 31:76–85.CrossRefGoogle Scholar
  103. Roth VL (1988) The biological basis of homology. In: Humphries CJ (ed) Ontogeny and Systematics, New York: Columbia University Press, pp. 1–26.Google Scholar
  104. Russell ES (1916) Form and Function. London: John Murray (Reprinted, 1982, Chicago: University of Chicago Press). Google Scholar
  105. Ruud G (1920) Über Hautsinnesorgane bei Spinax niger Bon. II. Die embryologische Entwicklung. Zool Jahrbüher Anat Ontogen 41:459–546.Google Scholar
  106. Sato M (1956) Studies on the pit organs of fishes. IV. The distribution, histological structure and development of the small pit organs. Annotat Zool Jpn 29: 207–212s.Google Scholar
  107. Sato M (1976) Electron microscopic study of the developing lateral line organs in the embryo of Triturus pyrrhogaster. Anat Ree 233:377–389.Google Scholar
  108. Schinde wolf OH (1946) Zur Kritiq des “Biogenetischen Grundgesetzes”. Naturwissenschaften 33:244–249.CrossRefGoogle Scholar
  109. Schoenwolf GC, Smith JL (1990) Mechanisms of neurulation: traditional viewpoint and recent advances. Development 109:243–270.PubMedGoogle Scholar
  110. Smith SC, Lannoo MJ, Armstrong JB (1988) Lateral-line neuromast development in Ambystoma mexicanum and a comparison with Rana pipiens. J Morphol 198:367–379.CrossRefGoogle Scholar
  111. Song JS, Northcutt RG (1991) Morphology, distribution, and innervation of the lateral line receptors of the Florida gar, Lepisosteus platyrhincus. Brain Behav Evol 37:10–37.PubMedCrossRefGoogle Scholar
  112. Srivastava MDL, Srivastava CBL (1969) The development of neuromasts in Cirrhina mrigala Ham. Buch. (Cyprinidae) and Ophicephalus (Channa) punctatus Block (Channidae). J Morphol 122:321–344.CrossRefGoogle Scholar
  113. Stone LS (1922) Experiments on the development of the cranial ganglia and the lateral line sense organs in Amblystoma punctatum. J Exp Zool 35:421–496.CrossRefGoogle Scholar
  114. Stone LS (1928) Experiments on the transplantation of placodes of the cranial ganglia in the amphibian embryo. III. Preauditory and postauditory placodal materials interchanged. J Comp Neurol 47:117–154.Google Scholar
  115. Stone LS (1929) Experiments on the transplantation of placodes of the cranial ganglia in the amphibian embryo. IV. Heterotopic transplantations of the post-auditory placodal material upon the head and body of Amblystoma punctatum. J Comp Neurol 48:311–330.Google Scholar
  116. Stone LS (1933) Development of the lateral-line sense organs in amphibians observed in living and vitally stained preparations. J Comp Neurol 57:507–540.CrossRefGoogle Scholar
  117. Stone LS (1935) Experimental formation of accessory organs in midbody lateral-line of amphibians. Proceedings of the Society for Exp Biol Med 33:80–82.Google Scholar
  118. Strong OS (1895) The cranial nerves of Amphibia. J Morphol 10:101–231.CrossRefGoogle Scholar
  119. Thomson KS (1977) On the individual history of cosmine and possible electroreceptive function of the pore-canal system in fossil fishes. In: Mahala Andrews S, Miles RS, and Walker AD (eds) Problems in Vertebrate Evolution. Linnean Soc Symp Ser 4, pp 247–270. Google Scholar
  120. Thomson KS (1988) Morphogenesis and Evolution. New York: Oxford University Press.Google Scholar
  121. Vischer HA (1989a) The development of lateral-line receptors in Eigenmannia (Teleostei, Gymnotiformes). I. The mechanoreceptive lateral-line system. Brain Behav Evol 33:205–222.Google Scholar
  122. Vischer HA (1989b) The development of lateral-line receptors in Eigenmannia (Teleostei, Gymnotiformes). II. The electroreceptive lateral-line system. Brain Behav Evol 33:223–236.Google Scholar
  123. Wake DB, Larson A (1987) Multidimensional analysis of an evolving lineage. Science 238:42–48.PubMedCrossRefGoogle Scholar
  124. Webb JF (1989) Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes. Brain Behav Evol 33:34–53.PubMedCrossRefGoogle Scholar
  125. Wiley EO (1981) Phylogenetics. Theory and Practice of Phylogenetic Systematics. New York: John Wiley & Sons. Google Scholar
  126. Wilson HV (1889) The embryology of the sea bass (Serranus atrarius). Bull US Fish Comm 9:209–277.Google Scholar
  127. Wilson HV, Mattocks JE (1897) The lateral sensory anläge in the salmon. Anat Anzeig 13:658–660.Google Scholar
  128. Winklbauer R, Hausen P (1983) Development of the lateral line system in Xenopus laevis. I. Normal development and cell movement in the supraorbital system. J Embryol Exp Morphol 76:265–281.Google Scholar
  129. Winklbauer R, Hausen P (1985) Development of the lateral line system in Xenopus laevis. IV. Pattern formation in the supraorbital system. J Embryol Exp Morphol 88:193–207.Google Scholar
  130. Young, GC (1986) The relationships of placoderm fishes. Zool J Linnean Soc 88:1–57.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • R. Glenn Northcutt

There are no affiliations available

Personalised recommendations