Skip to main content

Vision-based Autonomous Road Vehicles

  • Chapter
Vision-based Vehicle Guidance

Part of the book series: Springer Series in Perception Engineering ((SSPERCEPTION))

Abstract

Autonomous road vehicles, guided by computer vision systems, are a topic of research in numerous places in the world. Experimental vehicles have already been driven automatically on various types of roads. Some of these vehicles are briefly introduced, and one is described in more detail. Its dynamic vision system has enabled it to reach speeds of about 100 km/h on highways and 50 km/h on secondary roads.

The field has advanced rapidly in recent years. Nevertheless, many problems remain to be solved before such vehicles may be introduced into ordinary road traffic. Some of the problems and approaches to their solutions are discussed. There are good prospects that in the future driving robots or highway autopilots will help to make driving easier and safer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Annaratone, M., Arnould, E., Gross, T., Kung, H. T., Lam, M. S., Menzilcioglu, O., Sarocky, K., and Webb, J. A. (1986). “Warp Architecture and Implementation.” 13th Annual International Symposium on Computer Architecture, Tokyo, 1986.

    Google Scholar 

  2. Davis, L. S., Le Moigne, J., and Waxman, A. M. (1986). “Visual Navigation of Roadways.” Preprints. Conference on Intelligent Autonomous Systems, Amsterdam, December 1986, pp. 21–30.

    Google Scholar 

  3. Dickmanns, E. D. (1986). “Computer Vision in Road Vehicles Chances and Problems.” Preprint. ICTS-Symposium on Human Factors Technology for Next-Generation Transportation Vehicles, Amalfi, Italy.

    Google Scholar 

  4. Dickmanns, E. D. (1987). “4D-Dynamic Scene Analysis with Integral Spatio-Temporal Models.” In R. Bolles, ed., 4-th International Symposium on Robotics Research, Santa Cruz. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  5. Dickmanns, E. D., and Christians, Th. (1989). “Relative 3-D State Estimation for Autonomous Visual Guidance of Road Vehicles.” In T. Kanade et al., eds., Intelligent Autonomous Systems 2, Amsterdam, pp. 683–693.

    Google Scholar 

  6. Dickmanns, E. D., and Graefe, V. (1988). “Dynamic Monocular Machine Vision.” Machine Vision and Applications 1, 223–240.

    Article  Google Scholar 

  7. Dickmanns, E. D., and Graefe, V. (1988). “Applications of Dynamic Monocular Machine Vision.” Machine Vision and Applications 1, 241–261.

    Article  Google Scholar 

  8. Dickmanns, E. D., and Zapp, A. (1986). “A Curvature-Based Scheme for Improving Road Vehicle Guidance by Computer Vision.” In N. Marquino and J. H. Wolfe, eds., Mobile Robots. Proceedings of the SPIE, 727, 161–168.

    Google Scholar 

  9. Dickmanns, E. D., and Zapp, A. (1987): “Autonomous High-Speed Road Vehicle Guidance by Computer Vision.” Preprint. 10th IFAC-Congress, Munich 4, 232–237.

    Google Scholar 

  10. Graefe, V. (1983). Ein Bildvorverarbeitungsrechner für die Bewegungssteuerung durch Rechnersehen.” In H. Kazmierczak, ed., Mustererkennung 1983, NTG Fachberichte, VDE-Verlag, pp. 203–208.

    Google Scholar 

  11. Graefe, V. (1983). “A Preprocessor for the Real-Time Interpretation of Dynamic Scenes.” In T. S. Huang, ed., Image Sequence Processing and Dynamic Scene Analysis, Springer-Verlag, Berlin and New York, pp. 519–531.

    Google Scholar 

  12. Graefe, V. (1984): “Two Multiprocessor Systems for Low-Level Real-Time Vision.” In J. M. Brady, L. A. Gerhardt, and H. F. Davidson, eds., Robotics and Artifical Intelligence, Springer-Verlag, Berlin and New York, pp. 301–308.

    Google Scholar 

  13. Graefe, V. (1989a). “A Flexible Semiautomatic Program Generator for Dynamic Vision Systems.” Proceedings, International Workshop on Industrial Applications of Machine Intelligence and Vision—MIV89, Tokyo, pp. 100–105.

    Google Scholar 

  14. Graefe, V. (1989b). “Dynamic Vision Systems for Autonomous Mobile Robots.” Proceedings, IEEE/RSJ International Workshop on Intelligent Robots and Systems (IROS’89), Tsukuba, pp. 12–23.

    Google Scholar 

  15. Graefe, V. (1990). “On the Design of Robot Vision Systems.” NATO ASI Active Perception and Robot Vision. Maratea, July 89. To appear in NATO ASI Series, Springer-Verlag, Berlin and New York.

    Google Scholar 

  16. Graefe, V., and Kuhnert, K.-D. (1988). “A High-Speed Image Processing System Utilized in Autonomous Vehicle Guidance.” Proceedings of the IAPR Workshop on Computer Vision, Tokyo, pp. 10–13.

    Google Scholar 

  17. Graefe, V., and Regensburger, U. 1988. “Analysis and Measurement of Objects in the Path of a Vision-Guided Mobile Robot.” International Advanced Robotics Program—Proceedings of the Second Workshop on Manipulators, Sensors, and Steps Toward Mobility, Manchester, October 1988.

    Google Scholar 

  18. Graefe, V., and Solder, U. (1988). “Detection of Objects in the Path of a Vision-Guided Mobile Robot.” International Advanced Robotics Program—Proceedings of the Second Workshop on Manipulators, Sensors, and Steps Toward Mobility, Manchester, October 1988.

    Google Scholar 

  19. Haas, G. (1982). “Meßwertgewinnung durch Echtzeitauswertung von Bildfolgen.” Dissertation, Fakultät für Luft- und Raumfahrttechnik der Universität der Bundeswehr München.

    Google Scholar 

  20. Haas, G., and Graefe, V. (1983): “Locating Fast-Moving Objects in TV-Images in the Presence of Motion Blur.” In A. Oosterlinck and A. G. Tescher, eds., Applications of Digital Image Processing V., Proceedings of the SPIE 397, 440–446.

    Google Scholar 

  21. Inoue, H., and Mizoguchi, H. (1984). “A Flexible Multiwindow Vision System for Robots.” Proc. 2nd. Int. Symposium of Robotics Research, Kyoto, pp. 42–49.

    Google Scholar 

  22. Kanade, T., Thorpe, C. E., and Whittacker, W. (1986). “Autonomous Land Vehicle Project at CMU.” Proceedings of the ACM Computer Conference, Cincinnati.

    Google Scholar 

  23. Kuhnert, K.-D. (1986). “A Model-Driven Image Analysis System for Vehicle Guidance in Real Time.” Proceedings of the Second International Electronic Image Week, CESTA, Nice, pp. 216–221.

    Google Scholar 

  24. Kuhnert, K.-D. (1986). “A Vision System for Real-Time Road and Object Recognition for Vehicle Guidance.” In N. Marquino and W. J. Wolfe, eds., Mobile Robots. Proceedings of the SPIE 727, 267–272.

    Google Scholar 

  25. Kuhnert, K.-D. (1986). “Comparison of Intelligent Real-Time Algorithms for Guiding an Autonomous Vehicle.” In L. O. Hertzberger, ed.. Proceedings: Intelligent Autonomous Systems, Amsterdam.

    Google Scholar 

  26. Kuhnert, K.-D. (1988). “Zur Echtzeit-Bildfolgenanalyse mit Vorwissen.” Dissertation. Fakultät für Luft- und Raumfahrttechnik der Universität der Bundeswehr München.

    Google Scholar 

  27. Kuhnert, K.-D. (1990). “Dynamic Vision Guides the Autonomous Vehicle ATHENE.” Japan—USA Symposium on Flexible Automation, Kyoto, July 90, pp. 507–510.

    Google Scholar 

  28. Kuhnert, K.-D., and Graefe, V. (1988). “Vision Systems for Autonomous Mobility” Proceedings, IEEE International Workshop on Intelligent Robots and Systems, IROS’88, Tokyo, pp. 477–482.

    Google Scholar 

  29. Meissner, H.-G. (1982). “Steuerung dynamischer Systeme aufgrund bildhafter Informationen.” Dissertation, Fakultät für Luft- und Raumfahrttechnik der Universität der Bundeswehr München.

    Google Scholar 

  30. Moravec, H. P. (1980). Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover. Robotics Institute, Carnegie—Mellon University, Pittsburgh.

    Google Scholar 

  31. Mori, H., Ishiguro, H., Kotani, S., Yasutoml, S., and Chino, Y. (1988). “A Mobile Robot Strategy Applied to Harunobu-4.” 9th International Conference on Pattern Recognition, Rome, November 1988.

    Google Scholar 

  32. Niepold, R. (1988). Personal communication.

    Google Scholar 

  33. Pohl, R. W. (1958): Optik und Atomphysik. 10. Auflage, Göttingen, Heidelberg, p. 335.

    Google Scholar 

  34. Reddy, R. (1978). “Pragmatic Aspects of Machine Vision.” In A. Hanson, and E. Riseman, eds., Computer Vision Systems. Academic Press, San Diego, pp. 89–98.

    Google Scholar 

  35. Regensburger, U, and Graefe, V. (1990). “Object Classification for Obstacle Avoidance.” SPIE Symposium on Advances in Intelligent Systems. Boston, November 1990, pp. 112–119.

    Google Scholar 

  36. Shirai, Y. (1979). “On Application of 3-Dimensional Computer Vision.” Bul. Electrotech. Lab. 43 (6), 358–377.

    Google Scholar 

  37. Solder, U., and Graefe, V. (1990). “Object Detection in Real Time.” Proceedings of the SPIE Symposium on Advances in Intelligent Systems. Boston, November 1990, pp. 104–111.

    Google Scholar 

  38. Thorpe, C. E., and Kanade, E. (86). “Vision and Navigation for the CMU Navlab.” In N. Marquino and W. J. Wolfe, eds., Mobile Robots. Proceedings of the SPIE 727, 261–266.

    Google Scholar 

  39. Tsugawa, S., Yatabe, T., Hirose, T., and Matsumoto, S. (1979). “An Automobile with Artificial Intelligence.” 6th International Joint Conference on Artificial Intelligence, Tokyo, pp. 893–895.

    Google Scholar 

  40. Tsugawa, S., Hirose, T., and Yatabe, T. (1984). “An Intelligent Vehicle with Obstacle Detection and Navigation Functions.” Proceedings IECON’84, Tokyo 1, 303–308.

    Google Scholar 

  41. Turk, A., Morgenthaler, G., Gremban, D., and Marra, M. (1987). “Video Road-Following for the Autonomous Land Vehicle.” Proceedings IEEE Intern. Conf. on Robotics and Automation, Raleigh, North Carolina, pp. 273–280.

    Google Scholar 

  42. Waddington, J. F. (1988). Personal communication.

    Google Scholar 

  43. Waxman, A. M., Le Moigne, J., and Davis, L. S. (1986). “Maryland Autonomous Land Vehicles Project.” Proceedings of the Second International Electronic Image Week, CESTA, Nice, pp. 208–215.

    Google Scholar 

  44. Zapp, A. (1988). “Automatische Straßenfahrzeugführung durch Rechnersehen.” Dissertation, Fakultät für Luft- und Raumfahrttechnik der Universität der Bundeswehr München.

    Google Scholar 

  45. Zimdahl, W., Rackow, I., and Wilm, T. (1986). “OPTOPILOT—ein Forschungsansatz zur Spurerkennung und Spurführung bei Straßenfahrzeugen.” VDI Berichte 162, 49–60.

    Google Scholar 

  46. Wershofen, K. P., Graefe, V. (1991). “A Real-Time Multiple Lane Tracker for an Autonomous Road Vehicle.” Proceedings, EURISCON, Korfu, July 1991.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Graefe, V., Kuhnert, KD. (1992). Vision-based Autonomous Road Vehicles. In: Masaki, I. (eds) Vision-based Vehicle Guidance. Springer Series in Perception Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2778-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2778-6_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7665-4

  • Online ISBN: 978-1-4612-2778-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics