Shade, Shadow and Shape

  • Jean-Pierre Henry
  • Michel Merle
Part of the Progress in Mathematics book series (PM, volume 109)


We shall motivate the use of geometric cues in intelligent vision, then explain how mathematics can be used to define and unify treatment of these cues.1 2


Springer Lecture Note Apparent Contour Smooth Object Polyhedral Object Piecewise Smooth Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AR]
    ABRAHAM (Ralph) and Joel ROBBIN, Transversal Mappings and Flows, Benjamin, New-York, 1967.zbMATHGoogle Scholar
  2. [A1]
    ARNOLD (Vladimir), Lectures on Bifurcations in Versal Families, Russian Math. Surveys, 27, 1972.Google Scholar
  3. [A2]
    ARNOLD (Vladimir), Critical Points of Smooth Functions, Proc. Intern. Congr. Math. Vancouver 1974, pp. 19–39.Google Scholar
  4. [A6]
    ARNOLD (Vladimir), Catastrophe Theory, Springer Verlag, 1984.Google Scholar
  5. [A7]
    ARNOLD (Vladimir I.), Wave front evolution and equivariant Morse lemma, Comm. Pure Appl. Math., 29, (1976), 557–582.CrossRefMathSciNetGoogle Scholar
  6. [A8]
    ARNOLD (Vladimir I.), Singularities of systems of rays, Russian Math. Surveys, 38, 1983.Google Scholar
  7. [AGV]
    V. ARNOLD, A. VARCHENKO, S. GOUSSEIN-ZADE Singularités des applications différentiates, traduit du russe, Editions Mir, Moscou.Google Scholar
  8. [Bn]
    BENNEQUIN (Daniel), Caustique mystique (d’après Arnold et al.), Séminaire Bourbaki 84–85, n° 634.Google Scholar
  9. [B-G1]
    J.W. BRUCE and P.J. GIBLIN, “Outlines and their duals”, Proc. London Math. Soc. 50 (1985), 552–570.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [B-G2]
    J.W. BRUCE and P.J. GIBLIN, “Curves and Singularities”, Cambridge University Press, (1984).Google Scholar
  11. [B-G3]
    J.W. BRUCE and P.J. GIBLIN, “Projections of Surfaces with boundary”, Proc. London Math. Soc., (3) 60 (1990), 392–416.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [Cn]
    CHAPERON (Marc), Introduction à la théorie des catastrophes, Journées X-UPS, vol.2 (1978–79), Centre de Mathématiques, Ecole Polytechnique, 1984.Google Scholar
  13. [Cr]
    CHENCINER (Alain), “Travaux de Thom et Mather sur la stabilité topologique”, Séminaire Bourbaki, 25 ème année, 1972–1973, exposé 424Google Scholar
  14. [D1]
    DEMAZURE (Michel), “Classification des germes à point critique isolé et à nombre de modules 0 ou 1 (d’après V.I. Arnold)”, Séminaire Bourbaki 1973–1974, exposé 443, Springer Lecture Notes in Math. 431 (1975), 124–142.Google Scholar
  15. [D2]
    M. DEMAZURE, “Géométrie, Catastrophes et bifurcations”, Ecole Polytechnique, Cours, Édition 1987, published under the title:“Catastrophes et bifurcations”, Éditions Ellipses, Paris.Google Scholar
  16. [Du83]
    DUFOUR (Jean-Paul), “Famille de courbes planes différentiables”, Topology, vol. 22, 4, 449–474, 1983, Printed in Great Britain, Pergamon Press Ltd.Google Scholar
  17. [Du89]
    DUFOUR (Jean-Paul), “Modules pour les famille de courbes planes”, Annales de l’Institut Fourier, 39, 1, (1989), 225–238.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [G]
    GAFFNEY (Terence), “The structure of TA(f), classification and application to differential geometry, Orlik, P (ed.), Singularities Proc. Symp. Pure Math. 40 (part 1) (1983), 409–428.Google Scholar
  19. [Gi]
    GILMORE (Robert), Catastrophe Theory for Scientists and Engineers, Wiley, New-York, 1981.zbMATHGoogle Scholar
  20. [GG]
    GOLUBITSKY (Martin) and Victor GUILLEMIN, Stable Mappings and Their Singularities, Graduate Texts in Mathematics, vol. 14, Springer-Verlag, 1974, second corrected printing 1980.Google Scholar
  21. [GR]
    GORJUNOV, in “Singularity theory and its applications” Advances in Soviet Math. Vol 1 ( Arnold ed.) AMS 1990.Google Scholar
  22. [HM]
    HENRY (Jean-Pierre), and Michel MERLE, “Fronces et doubles plis”, in Michel Merle Thèse d’État, Paris, Février 1990.Google Scholar
  23. [HT]
    HENRY (Jean-Pierre), and Bernard TEISSIER “Suffisance des familles de jets et Equisingularité”, in Jean-Pierre HENRY Thèse d’État, Paris, Septembre 1979, et Séminaire F. Norguet (1974–75), Springer Lecture Notes in Math. 482 (1976), 351–357.CrossRefMathSciNetGoogle Scholar
  24. [Hi]
    HILTON (Peter John), editor, “Structural Stability, the Theory of Catastrophes, and Applications in the Sciences, Proceedings of the conference held at Battelle Seattle Researh Center 1975, Springer Lecture Notes in Math. 525 (1976).Google Scholar
  25. [Ho1]
    HORN (Berthold Klaus Paul), Height and Gradient from Shading, International Journal of Computer Vision, 5:1, (1990), 37–75, Kluwer Academic Publishers.CrossRefGoogle Scholar
  26. [Ho2]
    HORN (Berthold Klaus Paul), Robot Vision, MIT Press, MA; and McGrawHill: New-York (1986).Google Scholar
  27. [Ho3]
    HORN (Berthold K. P.), Obtaining shape from shading information., in P. H. Winston (ed.) The Psychology of Computer Vision, McGrawHill: New-York (1975), 115–155.Google Scholar
  28. [Ir]
    IRWIN (M.), Smooth Dynamical Systems, Academic Press, 1980.Google Scholar
  29. [K]
    J.J. KOENDERINK, “What does the occluding contour tell us about solid shape,” Perception, 13, (1984) 321–330.CrossRefGoogle Scholar
  30. [KD]
    J.J. KOENDERINK and A.J. Van DOORN, “The shape of smooth objects and the way contours end.” Perception, 11, (1984) 129–137.CrossRefGoogle Scholar
  31. [KD]
    J.J. KOENDERINK and A.J. Van DOORN, “The singularities of the visual mapping,” Bio. Cybernet. 24 Springer-Verlag (1976) 51–59.CrossRefzbMATHGoogle Scholar
  32. [Mk]
    MALIK (Jitendra), Interpreting Line Drawings of Curved Objects, International Journal of Computer Vision, 1, (1987), 73–103, Kluwer Academic Publishers, Boston.Google Scholar
  33. [Ma]
    MATHER (John), Stratifications and Mappings, Dynamical Systems, Academic Press, Inc., New-York and London, (1973).Google Scholar
  34. [Ma 69]
    MATHER (John), Stability of C∞ mappings III, Publ. I.H.E.S., 35, (1969), 127–156.CrossRefGoogle Scholar
  35. [Ma 70]
    MATHER (John N.), Stability of C∞ mappings IV, Publ. I.H.E.S., 37, (1970), 223–248.CrossRefGoogle Scholar
  36. [Ma 73]
    MATHER (John N.), Generic projections, Annals of Math., 98 no 2, September, (1973) 226–245.CrossRefzbMATHMathSciNetGoogle Scholar
  37. [Ma 76]
    MATHER (John N.), How to Stratify Mappings and Jet Spaces, L.N.M. n°535, pp 128–176, Springer Verlag, 1976.Google Scholar
  38. [Pl1]
    PLATONOVA (O. A.), Singularities of the mutual disposition of a surface and a line, Russian Math. Surveys, 36:1, (1981), 248–249.CrossRefzbMATHMathSciNetGoogle Scholar
  39. [Pl2]
    PLATONOVA (O. A.), Singularities of projections of smooth surfaces, Russian Math. Surveys, 39:1, (1984), 177–178.CrossRefMathSciNetGoogle Scholar
  40. [Ri1]
    J.H. RIEGER, “Families of maps from the plane to the plane”, J. London Math. Soc, (2) 36 (1987), 351–369.CrossRefzbMATHMathSciNetGoogle Scholar
  41. [Ri2]
    J.H. RIEGER, “On the classification of views of piecewise smooth objects”, Image and vision computing, vol. 5 no 2 (1987), 91–97.CrossRefMathSciNetGoogle Scholar
  42. [RK]
    ROSENFELD (A.) and A.C. KAK, Digital Picture Processing, Vols 1 & 2, second edition, Academic Press, New-York 1982.Google Scholar
  43. [Tal]
    TARI (Fari), Projections of piecewise smooth surfaces, to appear in J. London Math. Soc.Google Scholar
  44. [Ta2]
    TARI (Fari), Some applications of Singularity Theory to the Geometry of Curves and Surfaces, Ph. D. Thesis, Liverpool, 1990.Google Scholar
  45. [T1]
    THOM (René), Sur la théorie des enveloppes, Journal de Mathématiques Pures et Appliquées, XLI–2 (1962).Google Scholar
  46. [T2]
    THOM (René), Stabilité structurelle et morphogénèse: essai d’une théorie générale des modèles, Benjamin, Reading (Mass), 1972 ou Addison-Wesley, Reading, Mass. 1973.Google Scholar
  47. [T3]
    THOM (René), Modèles mathématiques de la morphogénèse, Ch. Bourgois, Paris, 1981.Google Scholar
  48. [T1]
    TOUGERON (Jean-Claude), “Stabilité des applications différentiates”, d’après Mather, Séminaire Bourbaki, 1967–1968, exposé 336, Addison-Wesley Benjamin.Google Scholar
  49. [T-R 90]
    TODD (James T.) and Francene D. REICHEL “Visual Perception of smoothly curved surfaces from double-projected contour patterns.”, Journal of experimental Psychology: Human Perception and Performance., Vol. 16, No 3, 1990, 665–674.Google Scholar
  50. [Tu]
    TUENO (Jean-Paul), Thèse de 3 ème Cycle, Université de Montpellier, Novembre 1989.Google Scholar
  51. [Wa]
    C.T.C. WALL, “Geometric Properties of Generic Differential Manifolds”, Vol III, Springer lecture Notes in Math., 597 (1977), 707–774.CrossRefGoogle Scholar
  52. [Wz]
    WALTZ, (David) “Understanding line drawings of scenes with shadows”, in P. H. Winston (ed.) The Psychology of Computer Vision, McGrawHill: New-York (1975), 19–91.Google Scholar
  53. [W]
    WHITNEY (Hassler), “On singularities of mappings of Euclidean spaces. I. Mappings of the plane into the plane”, Ann. of Math. 62 (1955), 374–410.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • Jean-Pierre Henry
    • 1
  • Michel Merle
    • 2
  1. 1.Centre de Mathématiques U. R. A. au C.N.R.S n°169École PolytechniquePalaiseau CedexFrance
  2. 2.Laboratoire de Mathématiques U. R. A. au C.N.R.S n°168Université de Nice-Sophia AntipolisNice Cedex 2France

Personalised recommendations