Advertisement

The analytic spread of the ideal of a monomial curve in projective 3-space

  • Philippe Gimenez
  • Marcel Morales
  • Aron Simis
Part of the Progress in Mathematics book series (PM, volume 109)

Abstract

Let k be an algebraically closed field and let C ⊂ An stand for a quasi homogeneous surface admitting a rational parametrization given by monomials. Consider the blowing-up A ñ of A n with center C and look at the fibre of the structural morphism
$$ \widetilde{{{\mathbb{A}^{2}}}} \to {\mathbb{A}^{n}} $$
over the origin 0 (the special fibre of the blowing-up).

Keywords

Lexicographic Order Special Fiber Initial Ideal Analytic Spread Structural Morphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Bresinsky and C. Huneke, Liaison of monomial curves in ℙ3, J. Reine Angew. Math, 365 (1986), 33–66.zbMATHMathSciNetGoogle Scholar
  2. [2]
    H. Bresinsky and B. Renschuch, Basisbestimmung Veronesescher Projektionsideale mit allgemeiner Nullstelle, Math. Nachr., 96 (1980), 257–269.CrossRefMathSciNetGoogle Scholar
  3. [3]
    B. Buchberger, Gröbner bases-an algorithmic method in polynomial ideal theory, Chapter 6, in Multidimentional Systems Theory N.K. Bose (ed.), D. Reidel, 1985.Google Scholar
  4. [4]
    S. Huckaba and C. Huneke, Powers of ideals having small analytic deviation, Amer. J. Math., to appear.Google Scholar
  5. [5]
    S. Huckaba and C. Huneke, Rees algebras of ideals having small analytic deviation, preprint.Google Scholar
  6. [6]
    M. Lejeune-Jalabert, Effectivité de calculs polynômiaux, Cours de D.E.A., Institut Fourier, Université de Grenoble, 1984–85.Google Scholar
  7. [7]
    F. Mora, Classification of monomial curves, Rend. Acad. Naz. XL 101 (1983), 13–28.MathSciNetGoogle Scholar
  8. [8]
    M. Morales, Syzygies of monomial curves and a linear diophantine problem of Frobenius, Max-Planck-Institut fur Mathematik, Bonn, preprint, 1987.Google Scholar
  9. [9]
    M. Morales, Sysygies des plongements de Veronese quasi-homogènes (provisory title), preprint, 1990.Google Scholar
  10. [10]
    M. Morales and A. Simis, Symbolic powers of monomial curves in ℙ3 lying on a quadric surface, Comm. in Algebra 20(4) (1992), 1109–1122.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    M. Morales and A. Simis, The second symbolic power of an arithmetically Cohen-Macaulay monomial curve in ℙ3, Comm. in Algebra, to appear.Google Scholar
  12. [12]
    M. Morales and A. Simis, Blow-up algebras of certain non-perfect determi-nantal loci, in preparation.Google Scholar
  13. [13]
    F. Pauer and M. Pfeifhofer, The theory of Gröbner bases, l’Enseignement Mathématique, 34 (1988), 215–232.zbMATHMathSciNetGoogle Scholar
  14. [14]
    L. Robbiano, Gröbner basis: a foundation for Commutative Algebra, preprint, 1989.Google Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • Philippe Gimenez
    • 1
  • Marcel Morales
    • 1
  • Aron Simis
    • 2
  1. 1.Université de Grenoble IInstitut FourierSt. Martin d’Hères CedexFrance
  2. 2.Instituto de MatemáticaUniversidade Federal da BahiaSalvador, BahiaBrazil

Personalised recommendations