Advertisement

A continuous and rational solution to Hilbert’s 17th problem and several cases of the Positivstellensatz

  • Charles N. Delzell
  • Laureano González-Vega
  • Henri Lombardi
Part of the Progress in Mathematics book series (PM, volume 109)

Abstract

From the Positivstellensatz we construct a continuous and rational solution for Hilbert’s 17th problem and for several cases of the Positivstellensatz. The solutions are obtained using an especially simple method.

Keywords

Rational Solution Intuitionistic Logic Finiteness Theorem Algebraic Identity Real Algebraic Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Art]
    Artin E.: Uber die Zerlegung definiter Funktionen in Quadrate. Abh. Math. Sem. Hamburg, 5 (1927), 100–115.CrossRefMathSciNetGoogle Scholar
  2. [BB]
    Bishop E., Bridges D.: Constructive Analysis. Springer-Verlag (1985).Google Scholar
  3. [BCR]
    Bochnak J., Coste M. and Roy M.-F.: Géométrie Algébrique Réelle. Ergebnisse vol. 12, Springer-Verlag (1987).Google Scholar
  4. [BP]
    Bradley M., Prestel A.: Representation of a real polynomial f(X) as a sum of 2m-th powers of rational functions. Ordered Algebraic Structures, J. Martinez, ed., Kluwer (1989), 197–207.Google Scholar
  5. [Day]
    Daykin D.: Hilbert’s 17 th problem. Ph.D. Thesis, unpublished (1961).Google Scholar
  6. [Del1]
    Delzell C.N.: A finiteness theorem for open semialgebraic sets, with applications to Hilbert’s 17th problem. Ordered Fields and Real Algebraic Geometry, Contemp. Math. 8, AMS, D. Dubois and T. Recio, (eds.), Providence 1982, 79–97.Google Scholar
  7. [Del2]
    Delzell C.N.: Case distinctions are necessary for representing polynomials as sums of squares. Proc. Herbrand Symp., Logic Coll. 1981, J. Stern (ed.), Amsterdam-Oxford-New York 1982, 87–103.Google Scholar
  8. [Del3]
    Delzell C.N.: A continuous, constructive solution to Hilbert’s 17th problem. Inventiones Mathematicae 76 (1984), 365–384.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [Del4]
    Delzell C.N.: On the Pierce-Birkhoff conjecture over ordered fields. Rocky Mountain Journal of Mathematics 19(3) (Summer 1989), 651–668.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [Del5]
    Delzell C.N.: A sup-inf-polynomially varying solution to Hilbert’s 17th problem. AMS Abstracts 10(3), (Issue 63, April 1989), 208–209, #849-14-160.MathSciNetGoogle Scholar
  11. [Del6]
    Delzell C.N.: On analytically varying solutions to Hilbert’s 17th problem. Submitted to Proc. Special Year in Real Algebraic Geometry and Quadratic Forms at UC Berkeley, 1990–1991, (W. Jacob, T.-Y. Lam, R. Robson, eds.), Contemporary Mathematics.Google Scholar
  12. [Del7]
    Delzell C.N.: On analytically varying solutions to Hilbert’s 17th problem. AMS Abstracts 12(1), (Issue 73, January 1991), page 47, #863-14-743.Google Scholar
  13. [Del8]
    Delzell C.N.: Continuous, piecewise-polynomial functions which solve Hilbert’s 17th problem. Submitted for publication (1992).Google Scholar
  14. [Du]
    Dubois D.W.: A nullstellensatz for ordered fields. Arkiv for Mat. 8 (1969), 111–114.CrossRefGoogle Scholar
  15. [Efr]
    Efroymson G.: Local reality on algebraic varieties. Journal of Algebra 29 (1974), 113–142.CrossRefMathSciNetGoogle Scholar
  16. [GV-L]
    González-Vega L., Lombardi H.: A Real Nullstellensatz and Positivstellensatz for the Semipolynomials over an Ordered Field. Submitted to the Journal of Pure and Applied Algebra (1992).Google Scholar
  17. [Hil]
    Hilbert D.: Mathematische Probleme. Göttinger Nachrichten (1900), 253–297, and Archiv der Math. u. Physik (3rd ser.) 1 (1901), 44–53, 213–237.Google Scholar
  18. [Kre1]_Kreisel G.: Some uses of metamathematics. British J. Phil. Sci. 7(26) (August 1956), 161–173.CrossRefGoogle Scholar
  19. [Kre2]_Kreisel G.: Sums of squares. Summaries of Talks Presented at the Summer Institute in Symbolic Logic in 1957 at Cornell Univ., Institute Defense Analyses, Princeton (1960), 313–320.Google Scholar
  20. [Kre3]_Kreisel G.: Review of Goodstein, MR 24A, 336–337, #A1821 (1962).MathSciNetGoogle Scholar
  21. [Kre4]_Kreisel G.: Review of Ershov, Zbl. 374, 02027 (1978).Google Scholar
  22. [Kri]
    Krivine J.L.: Anneaux préordonnés. Journal d’Analyse Mathématique 12 (1964), 307–326.CrossRefzbMATHMathSciNetGoogle Scholar
  23. [Lom1]_Lombardi H.: Effective real Nullstellensatz and variants. Effective Methods in Algebraic Geometry. Editors T. Mora and C. Traverso. Progress in Mathematics 94 (1991), 263–288, Birkhauser. Detailed French version in Théorème effectif des zéros réel et variantes (avec une majoration explicite des degrés), Memoire d’habilitation (1990).Google Scholar
  24. [Lom2]_Lombardi H.: Une étude historique sur les problèmes d’effectivité en algèbre réelle. Memoire d’habilitation (1990).Google Scholar
  25. [Lom3]_Lombardi H.: Une borne sur les degrés pour le théorème des zéros réel effectif. Proceedings of the conference on Real Algebraic Geometry held in La Turballe (1991). To appear as Lecture Notes in Mathematics.Google Scholar
  26. [LR]
    Lombardi H., Roy M.-F.: Théorie constructive élémentaire des corps ordonnés. Publications Mathematiques de Besançon, Théorie de Nombres, 1990–1991. English version in: Constructive elementary theory of ordered fields, Effective Methods in Algebraic Geometry. Editors T. Mora and C. Traverso. Progress in Mathematics 94 (1991), 249–262, Birkhauser.Google Scholar
  27. [MRR]
    Mines R., Richman F., Ruitenburg W.: A Course in Constructive Algebra. Universitext, Springer-Verlag (1988).Google Scholar
  28. [Pre1]_Prestel A.: Lectures on Formally Real Fields. IMPA Lecture Notes 22, Rio de Janeiro 1975; reprinted in Lecture Notes in Mathematics 1093 (1983), Springer-Verlag.Google Scholar
  29. [Pre2]_Prestel A.: Continuous representations of real polynomials as sums of 2 m -th powers. Math. Forschungsinst. Oberwolfach Tagungsbericht (Reelle algebraische Geometrie, June 10–16, 1990) 25 (1990), 18.Google Scholar
  30. [Ris]
    Risler J.-J.: Une caractérisation des idéaux des variétés algébriques réelles. C.R.A.S. Paris, Série A, 271 (1970), 1171–1173.Google Scholar
  31. [Rob1]_Robinson A.: On ordered fields and definite forms. Math. Ann. 130 (1955), 257–271.CrossRefzbMATHGoogle Scholar
  32. [Rob2]_Robinson A.: Further remarks on ordered fields and definite forms. Math. Ann. 130 (1956), 405–409.CrossRefzbMATHMathSciNetGoogle Scholar
  33. [Sch]
    Schwartz N.: Piecewise-polynomial functions. Submitted.Google Scholar
  34. [Sco1]_Scowcroft P.: A transfer theorem in constructive real algebra. Ann. Pure and Appl. Logic 40(1), 29–87 (1988).CrossRefMathSciNetGoogle Scholar
  35. [Sco2]_Scowcroft P.: Some continuous Positivstellensatze. Journal of Algebra 124 (1989), 521–532.CrossRefzbMATHMathSciNetGoogle Scholar
  36. [Sol]
    Solernó P.: Effective Lojasiewicz inequalities in semialgebraic geometry. Applicable Algebra in Engineering, Communication and Computing 2(1) (1991), 1–14.CrossRefzbMATHGoogle Scholar
  37. [Ste]
    Stengle G.: A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Math. Ann. 207 (1974), 87–97.CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • Charles N. Delzell
    • 1
  • Laureano González-Vega
    • 2
  • Henri Lombardi
    • 3
  1. 1.Dept. MathematicsLouisiana State UniversityBaton RougeUSA
  2. 2.Dept. MatemáticasUniversidad de CantabriaSantanderSpain
  3. 3.Lab. de MathématiquesUniversité de Franche-ComtéBesançonFrance

Personalised recommendations