Advertisement

Gröbner Bases and Standard Monomial Theory

  • Arjeh M. Cohen
  • Richard H. Cushman
Part of the Progress in Mathematics book series (PM, volume 109)

Abstract

For rings of polynomials on varieties corresponding to minuscule weight representations of Lie groups, we show how the standard monomial theory of Seshadri et al. can be used to compute Gröbner bases. This generalizes results of Sturmfels and White in which straightening has been interpreted as a normal form computation with respect to a Gröbner basis.

keywords

Lie groups minuscule weights straightening Gröbner bases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ACGH]
    E. Arbarello, M. Cornalba, P.A. Griffiths, J. Harris, Geometry of Algebraic Curves, Volume I, Springer Verlag, Berlin, 1984.Google Scholar
  2. [BjWa]
    A. Björner and M. Wachs, “Bruhat order of Coxeter groups and shellability”, Adv. in Math. 43, (1982), 87–100.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [Bour]
    N. Bourbaki, Groupes et algèbres de Lie, Chap. IV, V, VI, Hermann, Paris, 1968.Google Scholar
  4. [Brion]
    M. Brion, “Représentation exceptionnelles des groupes semi simples”, Ann. Scient. Éc. Norm. Sup. 18, (1985), 345–387.zbMATHMathSciNetGoogle Scholar
  5. [Buch]
    B. Buchberger, Gröbner bases — an algorithmic method in polynomial ideal theory, in “Multidimensional Systems Theory” (N.K. Bose, ed.), D. Reidel, Dordrecht, 1985.Google Scholar
  6. [Coh]
    A.M. Cohen, Coxeter Groups and three Related Topics,, pp. 235–278 in “Generators and Relations in Groups and Geometries, Castelvec-chio Pascoli, Italy (April 1990)” (A. Barlotti, E.W. Ellers, P. Plaumann, K. Strambach, eds.), NATO ASI Series C: Math. and Phys. Sciences 333, Kluwer Acad. Publ., Dordrecht, 1991.CrossRefGoogle Scholar
  7. [CoCo]
    A.M. Cohen and B.N. Cooperstein, “The 2-spaces of the standard E 6(q)-module”, Geometriae Dedicata 24, (1988), 467–480.MathSciNetGoogle Scholar
  8. [Deo]
    V.V. Deodhar, “Some characterizations of Bruhat ordering on a Cox-eter group and determination of the relative Möbius Function”, Inventions Math. 39, (1977), 187–198.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [Hill]
    H. Hiller, Geometry of Coxeter Groups, Research Notes in Math., Pitman, Boston, 1982.zbMATHGoogle Scholar
  10. [Hum]
    J.E. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, 1990.Google Scholar
  11. [LaSh]
    V. Lakshmibai and C.S. Seshadri, “Geometry of G/P — V”, J. Algebra 100, (1986), 462–557.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [Lich]
    W. Lichtenstein, “A system of quadrics describing the orbit of the highest weight vector”, Proc. Amer. Math, Soc. 84, (1982), 605–608.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [LiE]
    M.A.A. van Leeuwen, A.M. Cohen, B. Lisser, LiEmanual, describing version 2.0, CAN, Amsterdam, 1992.Google Scholar
  14. [Proc]
    R.A. Proctor, “Bruhat lattices, plane partition generating functions, and minuscule representations”, European J. Combinatorics 5, (1984), 331–350.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [Sesh]
    C.S. Seshadri,. Geometry of G/P-I, Theory of standard monomials for minuscule representations, pp. 207–239 in “C.P. Ramanujam-A tribute”, (for Tata Institute) Springer-Verlag, Berlin, 1978.Google Scholar
  16. [StWh1]
    B. Sturmfels and N. White, “Gröbner bases and invariant theory”, Adv. in Math. 76, (1989), 245–259.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [StWh2]
    B. Sturmfels and N. White, “Stanley decompositions of the bracket ring”, Math. Scandinavia 87, (1990), 183–189.MathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • Arjeh M. Cohen
    • 1
  • Richard H. Cushman
    • 1
  1. 1.Mathematics InstituteRijksuniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations