Advertisement

A Parametrized Nullstellensatz

  • Frédéric Smietanski
Conference paper
Part of the Progress in Mathematics book series (PM, volume 109)

Abstract

Let k be a field and f, F1,…,F3k[X 1,…,X n], with deg(Fi) = d i and maxd 1,…, d 3d. When there exist some polynomials A 1,…, A 3 and power N such that we have a representation 1 = A 1 F 1 + … + A 3F3 or f N = A 1 F 1 + … + A3F3, the question arises how to bound optimally a = sup deg {A i} and N.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C.A. Berenstein and D.C. Struppa ”Recent improvements in the complexity of the effective nullstellensatz”, Linear Algebra and its Applications (1991) p203–215.Google Scholar
  2. [2]
    C.A. Berenstein and D.C. Struppa ”Small degree solutions for the polynomial Bezout equation”, Linear Algebra Appl. 98 (1988) p41–55.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    C.A. Berenstein and A. Yger: ”Effective Bezout identities in Q[z 1,…, z n]”, Acta Mathematica, 166 (1991), p 69–120. IICrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    W. Dale Brownawell: ”Bounds for the degre in the nullstellensatz”, Ann. of Math.(2), 126 (1987), p577–591.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    W. Dale Brownawell: ”A prime power product version of the nullstellensatz”, Mich. J. Math.Google Scholar
  6. [6]
    L. Caniglia, A. Galligo, J. Heintz: ”Borne simple exponentielle pour les degrés dans le théorème des zéros sur un corps de caractéristique quelconque”, C.R.A.S. Paris 307 (1988), p255–258.zbMATHMathSciNetGoogle Scholar
  7. [7]
    Greta Hermann: ”Die frage der endliche vielen schritte in der theorie der polynomideale.”, Math. Ann., 95 (1926), p736–788.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    J. Rollár: ”Sharp effective nullstellensatz”, Journal of the American Mathematical Society 1 (1988) p 963–975.CrossRefMathSciNetGoogle Scholar
  9. [9]
    Noaï Fitchas and André Galligo: ”Nullstellensatz effectif and conjecture de Serre (Théorème de Quillen-Suslin) pour le calcul formel”, Math. Nachr. 149 (1990), p 231–253.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    Ju.V. Nesterenko: ”Transcendental Numbers”, Izv. Akad. Nauk. SSSR, Ser. Mat. Tom 41 n\( {{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{O}}} \)2 (1977), p243.MathSciNetGoogle Scholar
  11. [11]
    Patrice Philippon: ”Dénominateurs dans le théorème des zéros de Hilbert”, Acta Aritmetica 58 (1) (1991), p1–25.zbMATHMathSciNetGoogle Scholar
  12. [12]
    Patrice Philippon: ”Critères pour l’indépendance algébrique”, Publications Mathmatiques de l‘3I.H.E.S n\( {{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{O}}} \) 64 (1986), p5–52.Google Scholar
  13. [13]
    Bernard Teissier: ”Résultats récents d’algèbre commutative effective”, Séminaire Bourbaki 42ième année 718 (1989–90). Astérisque 189–190 (1991), p107–131.Google Scholar

Copyright information

© Birkhäuser Boston 1993

Authors and Affiliations

  • Frédéric Smietanski
    • 1
  1. 1.URA 168 du CNRSUniversité de Nice-Sophia Antipolis, Faculté des sciencesNice Cedex 2France

Personalised recommendations