Skip to main content

Part of the book series: Lecture Notes in Statistics ((LNS,volume 80))

Abstract

Thurstonian models have proven useful in a wide range of applications because they can describe the multidimensional nature of choice objects and the effects of similarity and comparability in choice situations. Special cases of Thurstonian ranking models are formulated that impose different constraints on the covariance matrix of the objects’ utilities. In addition, mixture models are developed to account for individual differences in rankings. Two estimation procedures, maximum likelihood and generalized least squares, are discussed. To illustrate the approach, data from three ranking experiments are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbuckle, J., & Nugent, J. H. A general procedure for parameter estimation for the law of comparative judgment. British Journal of Mathematical and Statistical Psychology, 26:240–260, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartholomew, D. J. Latent variable models and factor analysis. London: Oxford University Press, 1987.

    MATH  Google Scholar 

  3. Bock, R. D., & Aitkin, M. Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46:443–459, 1981.

    Article  MathSciNet  Google Scholar 

  4. Bock, R. D., Gibbons, R., & Muraki, E. Full-information item factor analysis. Applied Psychological Measurement, 12:261–280, 1988.

    Article  Google Scholar 

  5. Bock, R. D., & Jones, L. V. The measurement and prediction of judgment and choice. San Francisco: Holden-Day, 1968.

    Google Scholar 

  6. Böckenholt, I., & Gaul, W. Analysis of choice behavior via probabilistic ideal point and vector models. Applied Stochastic Models and Data Analysis, 2:209–226, 1986.

    Article  MATH  Google Scholar 

  7. Böckenholt, U. Thurstonian representation for partial ranking data. British Journal of Mathematical and Statistical Psychology, in press, 1992.

    Google Scholar 

  8. Brady, H. Factor and ideal point analysis for interpersonally incomparable data. Psychometrika, 54:181–202, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, A., & Mallows, C. L. Assessing goodness of fit of ranking models to data. The Statistician, 32:361–373, 1983.

    Article  Google Scholar 

  10. Christoffersson, A. Factor analysis of dichotomized variables. Psychometrika, 40:5–32, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  11. Critchlow, D. E. Metric methods for analyzing partially ranked data. New York: Springer, 1985.

    Book  MATH  Google Scholar 

  12. Croon, M. Latent class models for the analysis of rankings. In G. DeSoete, H. Feger, & K. C. Klauer (Eds.) New developments in psychological choice modeling (pp. 99–121). Elsevier: Holland, 1989.

    Chapter  Google Scholar 

  13. Daniels, H. E. Rank correlation and population models. Journal of the Royal Statistical Society B, 12:171–181 1950.

    MathSciNet  MATH  Google Scholar 

  14. DeSoete, G., & Carroll, J. D. A maximum likelihood method for fitting the wandering vector model. Psychometrika, 48:553–566 1983.

    Article  Google Scholar 

  15. DeSoete, G., Carroll, J. D., & DeSarbo, W. S. The wandering ideal point model: A probabilistic multidimensional unfolding model for paired comparison data. Journal of Mathematical Psychology, 30:28–41, 1986.

    Article  MathSciNet  Google Scholar 

  16. Fligner, M. A., & Verducci, J. S. Aspects of two group concordance. Communications in Statistics, Theory and Methods, 1479–1503 1987.

    Google Scholar 

  17. Hathaway, R. J. A constrained formulation of maximum-likelihood estimation for normal mixture distributions. Annals of Statistics, 13: 795–800, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  18. Heiser, W., amp; De Leeuw, J. Multidimensional mapping of preference data. Mathematiques et Sciences humaines, 19:39–96, 1981.

    Google Scholar 

  19. Hollander, M., & Sethuraman, J. Testing for agreement between groups of judges. Biometrika, 65:403–411 1978.

    Article  MathSciNet  MATH  Google Scholar 

  20. Inglehart, R. The silent revolution. Princeton: Princeton University Press, 1977.

    Google Scholar 

  21. Luce, R. D. Individual choice behavior. New York: Wiley. 1989.

    Google Scholar 

  22. Lwin, T., & Martin, P. J. Probits of mixtures. Biometrics, 45:721–732, 1959.

    Article  MathSciNet  Google Scholar 

  23. Manski, C., & McFadden, D. Alternative estimators and sample designs for discrete choice analysis. In C. Manski, & D. McFadden (Ed.) Structural analysis of discrete data with econometric applications. MIT Press: Cambridge, 1981.

    Google Scholar 

  24. McLachlan, G. J., & Basford, K. E. Mixture models. New York: Marcel Dekker, 1989.

    Google Scholar 

  25. Muthén, B. Latent variable structural equation modeling with categorical data. Journal of Econometrics, 22: 43–65, 1983.

    Article  MathSciNet  Google Scholar 

  26. Pendergrass, P. N., & Bradley, R. A. Ranking in triple comparisons. In I. Olkin (Ed.), Contributions to probability and statistics (pp.331–351). Palo Alto, CA: Stanford University Press, 1960.

    Google Scholar 

  27. Pettitt, A. N. Parametric tests for agreement amongst groups of judges. Biometrika, 69:365–375, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  28. Schervish, M. Algorithm AS 195. Multivariate normal probabilities with error bound. Applied Statistics, 33:81–94, 1984.

    Article  MATH  Google Scholar 

  29. Stroud, A. H., & Sechrest, D. Gaussian quadrature formulas. New York: Prentice Hall, 1966.

    MATH  Google Scholar 

  30. Takane, Y. Maximum likelihood estimation in the generalized cases of Thurstone’s law of comparative judgment. Japanese Psychological Research, 22:188–196, 1980.

    Google Scholar 

  31. Takane, Y. Analysis of covariance structures and probabilistic binary choice data. Cognition and Communication, 20:45–62, 1987.

    Google Scholar 

  32. Teicher, H. Identifiability of finite mixtures. Annals of Mathematical Statistics, 34:1265–1269, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  33. Thurstone, L. L. A law of comparative judgment. Psychological Review, 15:284–297, 1927.

    Google Scholar 

  34. Thurstone, L. L. Rank order as a psychophysical method. Journal of Experimental Psychology, 14:187–201, 1931.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Böckenholt, U. (1993). Applications of Thurstonian Models to Ranking Data. In: Fligner, M.A., Verducci, J.S. (eds) Probability Models and Statistical Analyses for Ranking Data. Lecture Notes in Statistics, vol 80. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2738-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2738-0_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97920-5

  • Online ISBN: 978-1-4612-2738-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics