Skip to main content

Aggregation Theorems and the Combination of Probabilistic Rank Orders

  • Conference paper
Probability Models and Statistical Analyses for Ranking Data

Part of the book series: Lecture Notes in Statistics ((LNS,volume 80))

Abstract

There are many situations where we wish to combine multiple rank orders or other preference information on a fixed set of options to obtain a combined rank order. Two of the most common applications are determining a social rank order on a set of options from a set of individual rank orders on those options, and predicting (or prescribing) an individual’s overall rank order on a set of options from the rank orders on a set of component dimensions of the options. In this paper, I develop solutions to this class of problems when the rank orders can occur probabilistically. I develop aggregation theorems that are motivated by recent theoretical work on the combination of expert opinions and I discuss various models that have the property that the representations are ‘of the same form’ for both the component and overall rank order probabilities. I also briefly discuss difficulties in actually using such probabilistic ranking models in the social choice situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aczel, J., and Dhombres, J. (1989). Functional equations in several variables. New York: Cambridge University Press.

    MATH  Google Scholar 

  2. Aczel, J., Ng, C.T., and Wagner, C. (1984). Aggregation theorems for allocation problems. SIAM Journal Algebraic Discrete Methods 5, 1–8.

    Article  MathSciNet  MATH  Google Scholar 

  3. Alsina, C. (1989). Synthesizing judgements given by probability distribution functions. Manuscript, Departament Mathematiques Universidad Politecnica de Catalunya.

    Google Scholar 

  4. Barbera, S. and Sonnenschein, H. (1978). Preference aggregation with randomized social orderings. Journal of Economic Theory, 18, 244–254.

    Article  MathSciNet  MATH  Google Scholar 

  5. Brams, S.J., and Fishburn, P.C. (1978). Approval voting. American Political Science Review, 72, 831–847.

    Article  Google Scholar 

  6. Buhlmann, H., and Huber, P.J. (1963). Pairwise comparison and ranking in tournaments. The Annals of Mathematical Statistics, 34, 501–510.

    Article  MathSciNet  Google Scholar 

  7. Clark, S.A. (1992). The representative agent model of probabilistic social choice. Social Sciences, 23 (in press).

    Google Scholar 

  8. Critchlow, D.E. (1980). Metric methods for analyzing partially ranked data. Lecture Notes in Statistics, #34, D. Brilliinger, S. Fienberg, J. Gani, J. Hartigan, and K. Krickerberg (Eds.). Berlin: Springer-Verlag.

    Google Scholar 

  9. Critchlow, D.E., Fligner, M.A., and Verducci, J.S. (1991). Probability models on ranking. Journal of Mathematical Psychology, 35, 294–318.

    Article  MathSciNet  MATH  Google Scholar 

  10. Falmagne, J.C. (1981). On a recurrent misuse of a classical functional equation result. Journal of Mathematical Psychology, 23, 190–193.

    Article  MathSciNet  MATH  Google Scholar 

  11. Fishburn, P.C. (1975). A probabilistic model of social choice: Comment. The Review of Economic Studies, 42, 297–301.

    Article  Google Scholar 

  12. Fishburn, P.C. (1978). Axioms of approval voting: direct proof. Journal of Economic Theory, 19, 180–185.

    Article  MathSciNet  MATH  Google Scholar 

  13. Fishburn, P.C. (1984). Probabilistic social choice based on simple voting comparisons. Review of Economic Studies, 51, 683–692.

    Article  MathSciNet  MATH  Google Scholar 

  14. Fishburn, P.C. (1990). Multiperson decision making: A selective review. In Multiperson Decision Making Models Using Fuzzy Sets and Possibility Theory. J. Kacprzyk and M. Fedrizzi (Eds.). Dordrecht: Kluwer. To Appear.

    Google Scholar 

  15. Fishburn, P.C. and Brams, S.J. (1981). Expected utility and approval voting. Behavioral Science, 26, 136–142.

    Article  MathSciNet  Google Scholar 

  16. Fishburn, P.C. and Gehrlein, W.V. (1977). Towards a theory of elections with probabilistic preferences. Econometrica, 45, 1907–1924.

    Article  MathSciNet  MATH  Google Scholar 

  17. Genest, C. (1984). Pooling operators with the marginalization property. The Canadian Journal of Statistics, 12, 153–163.

    Article  MathSciNet  MATH  Google Scholar 

  18. Genest, C., and McConway, K.J. (1990). Allocating the weights in the linear opinion pool. Journal of Forecasting, 9, 53–73.

    Article  Google Scholar 

  19. Genest, C., and Zidek, J.V. (1986). Combining probability distributions: A critique and an annotated bibliography. Statistical Science, 1, 114–148.

    Article  MathSciNet  Google Scholar 

  20. Gibbard, A. (1977). Manipulation of schemes that mix voting with chance. Econometrica, 45, 665–681.

    Article  MathSciNet  MATH  Google Scholar 

  21. Huber, P. J. (1963). Pairwise comparison and ranking: Optimum properties of the row sum procedure. The Annals of Mathematical Statistics, 34, 511–520.

    Article  MATH  Google Scholar 

  22. Intriligator, M.D. (1973). A probabilistic model of social choice. Review of Economic Studies, 40, 553–560.

    Article  Google Scholar 

  23. Kendall, M.G. (1950). Discussion on Symposium on Ranking Models. Journal of the Royal Statistical Society, Series B, 12, 189.

    Google Scholar 

  24. Luce, R.D. (1959). Individual Choice Behavior. New York: Wiley.

    MATH  Google Scholar 

  25. Luce, R.D. and Suppes, P. (1965). Preference, utility, and subjective probability. In R.D. Luce, R.R. Bush, and E. Galanter (Eds.), Handbook of Mathematical Psychology, III. New York: Wiley. pp. 230–270.

    Google Scholar 

  26. Mallows, C.L. (1957). Non-null ranking models. I. Biometrika, 44, 114–130.

    MathSciNet  MATH  Google Scholar 

  27. Marley, A.A.J. (1968). Some probabilistic models of simple choice and ranking. Journal of Mathematical Psychology, 5, 311–322.

    Article  MathSciNet  MATH  Google Scholar 

  28. Marley, A.A.J. (1991a). Aggregation theorems and multidimensional choice models. Theory & Decision, 30, 245–272.

    Article  MathSciNet  MATH  Google Scholar 

  29. Marley, A.A.J. (1991b). Context-dependent probabilistic choice models based on measures of binary advantage. Mathematical Social Sciences, 21, 201–231.

    Article  MathSciNet  MATH  Google Scholar 

  30. Martin-Löf, P. (1973). Statistika Modeller. Lecture notes in Swedish, compiled by Rolf Sundberg, Stockholm University.

    Google Scholar 

  31. McConway, K.J. (1981). Marginalization and linear opinion pools. Journal of the American Statistical Association, 76, 410–414.

    Article  MathSciNet  MATH  Google Scholar 

  32. Pattanaik, P.R. and Peleg, B (1986). Distribution of power under stochastic social choice rules. Econometrica, 54, 909–921.

    Article  MathSciNet  MATH  Google Scholar 

  33. Robertson, C.A. and Strauss, D.J. (1981). A characterization theorem for random utility variables. Journal of Mathematical Psychology, 23, 184–189.

    Article  MathSciNet  MATH  Google Scholar 

  34. Schmidt, F.F. (1984). Consensus, respect, and weighted averaging. Synthese, 62, 25–46.

    Article  Google Scholar 

  35. Sen, A. (1986). Social Choice Theory. In K.J. Arrow and M.D. Intriligator (Eds.). Handbook of Mathematical Economics, Vol. III. Chapter 22, 1073–1181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Marley, A.A.J. (1993). Aggregation Theorems and the Combination of Probabilistic Rank Orders. In: Fligner, M.A., Verducci, J.S. (eds) Probability Models and Statistical Analyses for Ranking Data. Lecture Notes in Statistics, vol 80. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2738-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2738-0_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97920-5

  • Online ISBN: 978-1-4612-2738-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics