Changing Conceptualization of Renormalization Theory

  • Silvan S. Schweber


Quantum field theory (QFT) was developed during the late 1920s to describe the interaction of charged particles with the electromagnetic field. During the 1930s the formalism was extended by Fermi to model β-decay phenomena and by Yukawa to explain nuclear forces. All these field theories have one feature in common: the interaction between the fields takes place at a single point in space-time. Such local quantum field theories seem to be the most efficient way to obtain a synthesis of quantum mechanics and special relativity consistent with the principle of causality. However, local quantum field theories are flawed: their perturbative solutions are divergent, the infinities that are encountered being a consequence of the locality of the interaction. Stimulated by important experimental advances after World War II (the measurement of the Lamb shift and of the hyperfine structure of hydrogen), renormalization theory was formulated to circumvent the divergence difficulties encountered in higher order calculations in quantum electrodynamics (QED). In this approach QED is defined by a limiting procedure. A cutoff is introduced into the theory so that the physics at momenta higher than some momentum—or equivalently the physics at distances shorter than some cut-off length—is altered and all calculated quantities thereby rendered finite but cut-off dependent. The parameters of the cut-off theory are then expressed in terms of physically measurable quantities (such as the mass and charge of the particles which are described by the theory).


Quantum Field Theory Quantum Electrodynamic Effective Field Theory Effective Theory Lamb Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, P. W. (1972), “More is different,” Science 177, pp. 393–396.ADSCrossRefGoogle Scholar
  2. Appelquist, T. and J. Carazzone (1975), “Infrared singularities and massive fields,” Phys. Rev. D 11, pp. 2856–2861.ADSCrossRefGoogle Scholar
  3. Born, M., W. Heisenberg, and P. Jordan (1926), “Zur quantemmechnik. II,”Z. Phys. 35, pp. 557–615.ADSCrossRefGoogle Scholar
  4. Bromberg, Joan (1976), “The concept of particle creation before and after quantum mechanics,” Hist. Stud. Phys. Sci. 7, pp. 161–191.Google Scholar
  5. Bromberg, Joan (1977), “Dirac’s quantum electrodynamics and the wave particle equivalence,” in History of Twentieth Century Physics. Proc. Int. School of Physics, “Enrico Fermi” Course LVII, C. Weiner, ed., New York: Academic.Google Scholar
  6. Brown, L. M. (1981), “Yukawa’s prediction of the meson,” Centaurus 25, pp. 71– 132.MathSciNetADSCrossRefGoogle Scholar
  7. Brown, L. M. (1985), “How Yukawa arrived at the meson theory,” Progr. Theor. Phys. 85, pp. 13–19.CrossRefGoogle Scholar
  8. Cao, T. Y. (1991), “The Reggeization program 1962–1982: Attempts at reconciling quantum field theory with S-matrix theory,” Arch. Hist. Exact Sci. 41, 239–283.MathSciNetMATHGoogle Scholar
  9. Cassidy, D. C., “Cosmic ray showers, high-energy physics, and quantum field theories,” Hist. Stud. Phys. Sci. 12, pp. 1–39.Google Scholar
  10. Coleman, S. and E. Weinberg (1973), “Radiative corrections as the origin of symmetry breaking,” Phys. Rev. D 7, pp. 1888–1910.ADSCrossRefGoogle Scholar
  11. Coleman, S. (1986), Secret Symmetry, Cambridge: Cambridge University Press.Google Scholar
  12. Cushing, J. (1982), “Models and methodologies in current theoretical high-energy physics,” Synthèse 50, pp. 5–101.MathSciNetCrossRefGoogle Scholar
  13. Cushing, J. T. (1990), Theory Construction and Selection in Modern Physics: The S-Matrix Theory, Cambridge: Cambridge University Press.MATHGoogle Scholar
  14. Darrigol, O. (1988), “The quantum electrodynamical analogy in early nuclear theory or the roots of Yukawa’s theory,” Rev. Hist. Sci. 41, pp. 226–297.Google Scholar
  15. Dirac, P. A. M. (1927a), “The quantum theory of the emission and absorption of radiation,” Proc. R. Soc. London Ser. A 114, pp. 243–265.ADSMATHCrossRefGoogle Scholar
  16. Dirac, P. A. M. (1927b), “The quantum theory of dispersion,” Proc. R. Soc. London Ser. A 114, pp. 710–728.ADSMATHCrossRefGoogle Scholar
  17. Dirac, P. A. M. (1929), “Quantum mechanics of many-electron systems,” Proc. R. Soc. London Ser. A 126, pp. 714–723.ADSGoogle Scholar
  18. Dirac, P. A. M. (1930a), “A theory of electrons and protons,” Proc. R. Soc. London Ser. A 126, pp. 360–365.ADSMATHCrossRefGoogle Scholar
  19. Dirac, P. A. M. (1930b), Quantum Mechanics, 1st ed., ( Oxford: Oxford University Press).MATHGoogle Scholar
  20. Dresden, M. (1985), “Reflections on ‘Fundamentally and Complexity’,” in Physical Reality and Mathematical Description, C. P. Enz and J. Mehra, eds., Dordrecht: Reidel, pp. 133–166.Google Scholar
  21. Dyson, F. J. (1949a), “The radiation theories of Tomonaga, Schwinger, and Feynman,” Phys. Rev. 75, pp. 486–502.MathSciNetADSMATHCrossRefGoogle Scholar
  22. Dyson, F. J. (1949b), “The S matrix in quantum electrodynamics,” Phys. Rev. 75, pp. 1736–1755.MathSciNetADSMATHCrossRefGoogle Scholar
  23. Dyson, F. J. (1951), “The renormalization method in quantum electrodynamics,” Proc. R. Soc. London Ser. A 207, pp. 395–401.MathSciNetADSMATHCrossRefGoogle Scholar
  24. Dyson, F. J. (1952), “Divergence of perturbation theory in quantum electrodynamics,” Phys. Rev. 85, pp. 631–632.MathSciNetADSMATHCrossRefGoogle Scholar
  25. Einstein, A. (1949), “Autobiographical notes,” in Albert Einstein: Philosopher— Scientist, P. A. Schilpp, ed., Evanston: The Library of Living Philosophers.Google Scholar
  26. Fermi, E. (1934), “Versuch einer theorie der β-strahlen. I,” Z. Phys. 88, pp. 161–171.MATHCrossRefGoogle Scholar
  27. Feynman, R. P. (1966), The development of the space-time view of quantum mechanics. Nobel lecture, Science 1966, pp. 699–708.ADSCrossRefGoogle Scholar
  28. Feynman, R. P. (1948b), “A relativistic cutoff for classical electrodynamics,” Phys. Rev. 74, pp. 939–946.MathSciNetADSMATHCrossRefGoogle Scholar
  29. Feynman, R. P. (1948c), “Relativistic cutoff for quantum electrodynamics,” Phys. Rev. 74, pp. 1430–1438.MathSciNetADSMATHCrossRefGoogle Scholar
  30. Feynman, R. P. (1949a), “The theory of positrons,” Phys. Rev. 76, pp. 749– 768.MathSciNetADSMATHCrossRefGoogle Scholar
  31. Feynman, R. P. (1949b), “The space-time approach to quantum electrodynamics,” Phys. Rev. 76, pp. 769–789.MathSciNetADSMATHCrossRefGoogle Scholar
  32. Feynman, R. P. (1966), “The development of the space-time view of quantum mechanics. Nobel lecture,” Science 1966, pp. 699–708.ADSCrossRefGoogle Scholar
  33. Galison, P. (1983), “The discovery of the muon and the failed revolution against quantum electrodynamics,” Centaurus 26, pp. 262–316.MathSciNetADSCrossRefGoogle Scholar
  34. Gell-Mann, M. and F. Low (1954), “Quantum electrodynamics at small distances,” Phys. Rev. 95, pp. 1300–1312.MathSciNetADSMATHCrossRefGoogle Scholar
  35. Gell-Mann, M. (1985), “From renormalizability to calculability?” in Shelter Island II, R. Jackiw, N. N. Khuri, S. Weinberg, and E. Witten, eds., Cambridge, MA: MIT Press.Google Scholar
  36. Georgi, H. (1989), “Effective quantum field theories,” in The New Physics, Paul Davies, ed., Cambridge: Cambridge University Press, pp. 4446–4457.Google Scholar
  37. Gross, D. (1985a), “Beyond quantum field theory,” in Recent Developments in Quantum Field Theory, J. Ambjorn, B. J. Durhuus, and J. L. Petersen, eds., New York: Elsevier.Google Scholar
  38. Gross, D. (1985b), “On the uniqueness of physical theories,” in A Passion for Physics, C. DeTar, J. Finkelstein, and Chugi. Tan, eds., Singapore: World Scientific.Google Scholar
  39. Kinoshita, Toichiro (1990), Quantum Electrodynamics, Singapore: World Scientific.MATHGoogle Scholar
  40. Lamb, W. E. Jr. and R. C. Retherford (1947), “Fine structure of the hydrogen atom by a microwave method,” Phys. Rev. 72, pp. 241–243.ADSCrossRefGoogle Scholar
  41. Lepage, G. Peter (1989), “What is renormalization?” preprint, CLNS, 89/970. Newman Laboratory of Nuclear Studies, Cornell University.Google Scholar
  42. Lewis, H. W. (1948), “On the reactive terms in quantum electrodynamics,” Phys. Rev. 13, pp. 173–176.ADSCrossRefGoogle Scholar
  43. Nafe, J. E., E. B. Nelson, and I.I. Rabi (1947), “The hyperfine structure of atomic hydrogen and deuterium,” Phys. Rev. 71, pp. 914–915.ADSCrossRefGoogle Scholar
  44. Ovrut, B. and H. Schnitzer (1981a), “The decoupling theorem and minimal subtractions,” Phys. Lett. B 100/5, pp. 403–406.ADSCrossRefGoogle Scholar
  45. Ovrut, B. (1981b), “Effective field theories and higher dimension operators,” Phys. Rev. D 24, pp. 1695–1698.ADSCrossRefGoogle Scholar
  46. Pais, A. (1986), Inward Bound, New York: Oxford University Press.Google Scholar
  47. Polchinski, P. (1984), “Renormalization and effective Lagrangian,” Nucl. Phys. B 231, pp. 269–295.ADSCrossRefGoogle Scholar
  48. Schwartz, J. H. (1987), “Superstrings,” Physics Today 40/11, pp. 33–40.Google Scholar
  49. Schweber, S. S. (1986a), “Shelter Island, Pocono, and Oldstone: The emergence of American quantum electrodynamics after World War II,” Osiris (Second Series) 2, pp. 265–302.MathSciNetCrossRefGoogle Scholar
  50. Schweber, S. S. (1986b), “Feynman and the visualization of space-time processes,” Rev. Mod. Phys. 58, pp. 449–508.MathSciNetADSCrossRefGoogle Scholar
  51. Schwinger, J. (1948a), “On quantum electrodynamics and the magnetic moment of the electron,” Phys. Rev. 73, pp. 416–417.MathSciNetADSMATHCrossRefGoogle Scholar
  52. Schwinger, J. (1948b), “Quantum electrodynamics. I. A covariant formulation,” Phys. Rev. 74, pp. 1439–1461.MathSciNetADSMATHCrossRefGoogle Scholar
  53. Schwinger, J. (1951), “On the Green’s functions of quantized field. I,” Proc. Natl. Acad. Sei. U.S.A. 37, pp. 452–459.MathSciNetADSCrossRefGoogle Scholar
  54. Schwinger, J. (1973), “A report on quantum electrodynamics,” in The Physicist’s Conception of Nature, ( J. Mehra, ed., Reidel, Dordrecht ), pp. 413–429.Google Scholar
  55. Schwinger, J. (1983), “Renormalization theory of quantum electrodynamics: An individual view,” in The Birth of Particle Physics, L. M. Brown and L. Hoddeson, eds., Cambridge: Cambridge University Press, pp. 329–353.Google Scholar
  56. Stückelberg, E. C. G. and A. Peterman (1953), “La normalisation des constantes dans la theorie des quanta,” Helv. Phys. Acta 26, pp. 499–520.MathSciNetMATHGoogle Scholar
  57. Symanzik, K. (1970), “Small distance behavior in field theory and power counting,” Commun. Math. Phys. 18, pp. 227–246.MathSciNetADSMATHCrossRefGoogle Scholar
  58. Tomonaga, S. (1946), “On a relativistically invariant formulation of the quantum theory of wave fields,” Progr. Theor. Phys. 1, pp. 27–42.MathSciNetADSMATHCrossRefGoogle Scholar
  59. Tomonaga, S. (1965), “Development of quantum electrodynamics,” in Nobel Lectures (Physics) : 1963–1970, Amsterdam: Elsevier, pp. 126–136.Google Scholar
  60. Weinberg, S. (1960), “High energy behavior in quantum field theory,” Phys. Rev. 118, pp. 838–849.MathSciNetADSMATHCrossRefGoogle Scholar
  61. Weinberg, S. (1967), “A model of leptons,” Phys. Rev. Lett. 19, pp. 1264–1266.ADSCrossRefGoogle Scholar
  62. Weinberg, S. (1977), “The search for unity: Notes for a history of quantum field theory,” Deadalus, Fall 1977, Vol. II of Discoveries and Interpretations in Contemporary Scholarship.Google Scholar
  63. Weinberg, S. (1979), “Phenomenological Lagrangian,” Physica A 96, pp. 327– 340.ADSCrossRefGoogle Scholar
  64. Weinberg, S. (1980a), “Conceptual foundations of the unified theory of weak and electromagnetic interactions,” Rev. Mod. Phys. 52, pp. 515–524.MathSciNetADSCrossRefGoogle Scholar
  65. Weinberg, S. (1980b), “Effective gauge theories,” Phys. Lett. B 91, pp. 51–55.ADSCrossRefGoogle Scholar
  66. Weinberg, Steven (1983), “Why the renormalization group is a good thing,” in Asymptotic Realms of Physics: Essays in Honor of Francis E. Low, A. H. Guth, K. Huang, and R. L. Jaffe, eds., Cambridge, MA: MIT Press.Google Scholar
  67. Weinberg, Steven (1985a), “The ultimate structure of matter,” in A Passion for Physics: Essays in Honor of Geoffrey Chew, C. DeTar, J. Finkelstein, and C. I. Tan, eds., Singapore: World Scientific.Google Scholar
  68. Weinberg, Steven (1985b), “Calculation of fine structure constants,” in Shelter Island II, Cambridge, MA: MIT Press.Google Scholar
  69. Weinberg, Steven (1986a), “Particle physics: Past and future,” Int. J. Mod. Phys. A 1/1 pp. 135–145.MathSciNetADSCrossRefGoogle Scholar
  70. Weinberg, Steven (1986b), “Towards the final laws of physics,” in Elementary Particles and the Laws of Physics. The 1986 Dirac Memorial Lectures, Cambridge: Cambridge University Press.Google Scholar
  71. Weinberg, Steven (1987), Steven (1987), “Newtonianism, reductionism and the art of congressional testimony,” Talk at the Tercentenary Celebration of Newton’s Principia. University of Cambridge, 30 June 1987.Google Scholar
  72. Wentzel, G. (1943), Einführung in der Quantentheorie der Wellenfelder, Wein: Franz Deuticke.MATHGoogle Scholar
  73. Wilson, K. G. (1965), “Model Hamiltonians for local quantum field theory,” Phys. Rev. B 140, pp. 445–457.ADSCrossRefGoogle Scholar
  74. Wilson, K. G. (1969), “Non-Lagrangian models of current algebra,” Phys. Rev. 179, pp. 1499–1512.MathSciNetADSCrossRefGoogle Scholar
  75. Wilson, K. G. (1970a), “Operator-product expansions and anomalous dimensions in the Thirring model,” Phys. Rev. D 2, pp. 1473–1477.ADSCrossRefGoogle Scholar
  76. Wilson, K. G. (1970b), “Anomalous dimensions and the breakdown of scale invariance in perturbation theory,” Phys. Rev. D 2, pp. 1478–1493.ADSCrossRefGoogle Scholar
  77. Wilson, K. G. and J. Kogut (1974), “The renormalization group and the ε expansion,” Phys. Rep. C 12, p. 131.CrossRefGoogle Scholar
  78. Wilson, K. G. (1975), “The renormalization group: Critical phenomena and the Kondo problem,” Rev. Mod. Phys. 47, pp. 773–840.ADSCrossRefGoogle Scholar
  79. Wilson, K. B. (1979), “Problems in physics with many scales of length,” Sci. Am. 241, pp. 158–179.CrossRefGoogle Scholar
  80. Wilson, K. G. (1983), “The renormalization group and critical phenomena,” Rev. Mod. Phys. 55, pp. 583–600.ADSCrossRefGoogle Scholar
  81. Ziman, J. M. (1974), Phys. Bull. 25, pp. 280–285.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1993

Authors and Affiliations

  • Silvan S. Schweber

There are no affiliations available

Personalised recommendations